Neptunium

Neptunium is a chemical element; it has symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after the planet Uranus, led to it being named after Neptune, the next planet beyond Uranus. A neptunium atom has 93 protons and 93 electrons, of which seven are valence electrons. Neptunium metal is silvery and tarnishes when exposed to air. The element occurs in three allotropic forms and it normally exhibits five oxidation states, ranging from +3 to +7. Like all actinides, it is radioactive, poisonous, pyrophoric, and capable of accumulating in bones, which makes the handling of neptunium dangerous.

Neptunium, 93Np
Neptunium
Pronunciation/nɛpˈtjniəm/ (nep-TEW-nee-əm)
Appearancesilvery metallic
Mass number[237]
Neptunium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Pm

Np

(Uqs)
uraniumneptuniumplutonium
Atomic number (Z)93
Groupf-block groups (no number)
Periodperiod 7
Block  f-block
Electron configuration[Rn] 5f4 6d1 7s2
Electrons per shell2, 8, 18, 32, 22, 9, 2
Physical properties
Phase at STPsolid
Melting point912±3 K (639±3 °C, 1182±5 °F)
Boiling point4447 K (4174 °C, 7545 °F) (extrapolated)
Density (near r.t.)alpha: 20.45 g/cm3
accepted standard value: 19.38 g/cm3
Heat of fusion5.19 kJ/mol
Heat of vaporization336 kJ/mol
Molar heat capacity29.46 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2194 2437
Atomic properties
Oxidation states+2, +3, +4, +5, +6, +7 (an amphoteric oxide)
ElectronegativityPauling scale: 1.36
Ionization energies
  • 1st: 604.5 kJ/mol
Atomic radiusempirical: 155 pm
Covalent radius190±1 pm
Spectral lines of neptunium
Other properties
Natural occurrencefrom decay
Crystal structure orthorhombic
Thermal conductivity6.3 W/(m⋅K)
Electrical resistivity1.220 µΩ⋅m (at 22 °C)
Magnetic orderingparamagnetic
CAS Number7439-99-8
History
Namingafter planet Neptune, itself named after Roman god of the sea Neptune
DiscoveryEdwin McMillan and Philip H. Abelson (1940)
Isotopes of neptunium
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
235Np synth 396.1 d α 231Pa
ε 235U
236Np synth 1.54×105 y ε 236U
β 236Pu
α 232Pa
237Np trace 2.144×106 y α 233Pa
239Np trace 2.356 d β 239Pu

Although many false claims of its discovery were made over the years, the element was first synthesized by Edwin McMillan and Philip H. Abelson at the Berkeley Radiation Laboratory in 1940. Since then, most neptunium has been and still is produced by neutron irradiation of uranium in nuclear reactors. The vast majority is generated as a by-product in conventional nuclear power reactors. While neptunium itself has no commercial uses at present, it is used as a precursor for the formation of plutonium-238, which is in turn used in radioisotope thermal generators to provide electricity for spacecraft. Neptunium has also been used in detectors of high-energy neutrons.

The longest-lived isotope of neptunium, neptunium-237, is a by-product of nuclear reactors and plutonium production. This isotope, and the isotope neptunium-239, are also found in trace amounts in uranium ores due to neutron capture reactions and beta decay.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.