Neon

Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. It is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air.

Neon, 10Ne
Neon
Appearancecolorless gas exhibiting an orange-red glow when placed in an electric field
Standard atomic weight Ar°(Ne)
  • 20.1797±0.0006
  • 20.180±0.001 (abridged)
Neon in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
He

Ne

Ar
fluorineneonsodium
Atomic number (Z)10
Groupgroup 18 (noble gases)
Periodperiod 2
Block  p-block
Electron configuration[He] 2s2 2p6
Electrons per shell2, 8
Physical properties
Phase at STPgas
Melting point24.56 K (−248.59 °C, −415.46 °F)
Boiling point27.104 K (−246.046 °C, −410.883 °F)
Density (at STP)0.9002 g/L
when liquid (at b.p.)1.207 g/cm3
Triple point24.556 K, 43.37 kPa
Critical point44.4918 K, 2.7686 MPa
Heat of fusion0.335 kJ/mol
Heat of vaporization1.71 kJ/mol
Molar heat capacity20.79 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 12 13 15 18 21 27
Atomic properties
Oxidation states0
Ionization energies
  • 1st: 2080.7 kJ/mol
  • 2nd: 3952.3 kJ/mol
  • 3rd: 6122 kJ/mol
  • (more)
Covalent radius58 pm
Van der Waals radius154 pm
Spectral lines of neon
Other properties
Natural occurrenceprimordial
Crystal structure face-centered cubic (fcc)
Thermal conductivity49.1×103 W/(m⋅K)
Magnetic orderingdiamagnetic
Molar magnetic susceptibility−6.74×10−6 cm3/mol (298 K)
Bulk modulus654 GPa
Speed of sound435 m/s (gas, at 0 °C)
CAS Number7440-01-9
History
PredictionWilliam Ramsay (1897)
Discovery and first isolationWilliam Ramsay & Morris Travers (1898)
Isotopes of neon
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
20Ne 90.5% stable
21Ne 0.27% stable
22Ne 9.25% stable

Neon was discovered along with krypton and xenon in 1898 as one of the three residual rare inert elements remaining in dry air after nitrogen, oxygen, argon and carbon dioxide were removed. Neon was the second of these three rare gases to be discovered and was immediately recognized as a new element from its bright red emission spectrum. The name neon is derived from the Greek word νέον, neuter singular form of νέος (neos), meaning 'new'. Neon is chemically inert, and no uncharged neon compounds are known. The known compounds of neon include ionic molecules and fragile molecules that are held together by van der Waals forces.

Most neon in the cosmos was synthesized from oxygen and helium by nuclear fusion within stars in the alpha-capture process. Although neon is a very common element in the universe and solar system (it is fifth in cosmic abundance after hydrogen, helium, oxygen and carbon), it is rare on Earth. It composes about 18.2 ppm of air by volume (this is about the same as the molecular or mole fraction) and a smaller fraction in Earth's crust. The reason for neon's relative scarcity on Earth and the inner (terrestrial) planets is that neon is highly volatile and forms no compounds to fix it to solids. As a result, it escaped from the planetesimals under the warmth of the newly ignited Sun in the early Solar System.

Neon gives a distinct reddish-orange glow when used in low-voltage neon glow lamps, high-voltage discharge tubes and neon advertising signs. The red emission line from neon also causes the well-known red light of helium–neon lasers. Neon is used in some plasma-tube and refrigerant applications but has few other commercial uses. It is commercially extracted by the fractional distillation of liquid air. Since air is the only source, neon is considerably more expensive than helium.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.