MyoD

MyoD, also known as myoblast determination protein 1, is a protein in animals that plays a major role in regulating muscle differentiation. MyoD, which was discovered in the laboratory of Harold M. Weintraub, belongs to a family of proteins known as myogenic regulatory factors (MRFs). These bHLH (basic helix loop helix) transcription factors act sequentially in myogenic differentiation. Vertebrate MRF family members include MyoD1, Myf5, myogenin, and MRF4 (Myf6). In non-vertebrate animals, a single MyoD protein is typically found.

MYOD1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesMYOD1, MYF3, MYOD, PUM, bHLHc1, myogenic differentiation 1, MYODRIF
External IDsOMIM: 159970 MGI: 97275 HomoloGene: 7857 GeneCards: MYOD1
Orthologs
SpeciesHumanMouse
Entrez

4654

17927

Ensembl

ENSG00000129152

ENSMUSG00000009471

UniProt

P15172

P10085

RefSeq (mRNA)

NM_002478

NM_010866

RefSeq (protein)

NP_002469

NP_034996

Location (UCSC)Chr 11: 17.72 – 17.72 MbChr 7: 46.03 – 46.03 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

MyoD is one of the earliest markers of myogenic commitment. MyoD is expressed at extremely low and essentially undetectable levels in quiescent satellite cells, but expression of MyoD is activated in response to exercise or muscle tissue damage. The effect of MyoD on satellite cells is dose-dependent; high MyoD expression represses cell renewal, promotes terminal differentiation and can induce apoptosis. Although MyoD marks myoblast commitment, muscle development is not dramatically ablated in mouse mutants lacking the MyoD gene. This is likely due to functional redundancy from Myf5 and/or Mrf4. Nevertheless, the combination of MyoD and Myf5 is vital to the success of myogenesis.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.