Gyrobifastigium

In geometry, the gyrobifastigium is the 26th Johnson solid (J26). It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can tile three-dimensional space.

Gyrobifastigium
TypeJohnson
J25J26J27
Faces4 triangles
4 squares
Edges14
Vertices8
Vertex configuration4(3.42)
4(3.4.3.4)
Symmetry groupD2d
Dual polyhedronElongated tetragonal disphenoid
Propertiesconvex, honeycomb
Net

It is also the vertex figure of the nonuniform p-q duoantiprism (if p and q are greater than 2). Despite the fact that p, q = 3 would yield a geometrically identical equivalent to the Johnson solid, it lacks a circumscribed sphere that touches all vertices, except for the case p = 5, q = 5/3, which represents a uniform great duoantiprism.

Its dual, the elongated tetragonal disphenoid, can be found as cells of the duals of the p-q duoantiprisms.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.