Duoprism

In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an (n+m)-polytope, where n and m are dimensions of 2 (polygon) or higher.

Set of uniform p-q duoprisms
TypePrismatic uniform 4-polytopes
Schläfli symbol{p}×{q}
Coxeter-Dynkin diagram
Cellsp q-gonal prisms,
q p-gonal prisms
Facespq squares,
p q-gons,
q p-gons
Edges2pq
Verticespq
Vertex figure
disphenoid
Symmetry[p,2,q], order 4pq
Dualp-q duopyramid
Propertiesconvex, vertex-uniform
 
Set of uniform p-p duoprisms
TypePrismatic uniform 4-polytope
Schläfli symbol{p}×{p}
Coxeter-Dynkin diagram
Cells2p p-gonal prisms
Facesp2 squares,
2p p-gons
Edges2p2
Verticesp2
Symmetry[p,2,p] = [2p,2+,2p], order 8p2
Dualp-p duopyramid
Propertiesconvex, vertex-uniform, Facet-transitive

The lowest-dimensional duoprisms exist in 4-dimensional space as 4-polytopes being the Cartesian product of two polygons in 2-dimensional Euclidean space. More precisely, it is the set of points:

where P1 and P2 are the sets of the points contained in the respective polygons. Such a duoprism is convex if both bases are convex, and is bounded by prismatic cells.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.