I have a series of data and need to detect peak values in the series within a certain number of readings (window size) and excluding a certain level of background "noise." I also need to capture the starting and stopping points of the appreciable curves (ie, when it starts ticking up and then when it stops ticking down).
The data are high precision floats.
Here's a quick sketch that captures the most common scenarios that I'm up against visually:
One method I attempted was to pass a window of size X along the curve going backwards to detect the peaks. It started off working well, but I missed a lot of conditions initially not anticipated. Another method I started to work out was a growing window that would discover the longer duration curves. Yet another approach used a more calculus based approach that watches for some velocity / gradient aspects. None seemed to hit the sweet spot, probably due to my lack of experience in statistical analysis.
Perhaps I need to use some kind of a statistical analysis package to cover my bases vs writing my own algorithm? Or would there be an efficient method for tackling this directly with SQL with some kind of local max techniques? I'm simply not sure how to approach this efficiently. Each method I try it seems that I keep missing various thresholds, detecting too many peak values or not capturing entire events (reporting a peak datapoint too early in the reading process).
Ultimately this is implemented in Ruby and so if you could advise as to the most efficient and correct way to approach this problem with Ruby that would be appreciated, however I'm open to a language agnostic algorithmic approach as well. Or is there a certain library that would address the various issues I'm up against in this scenario of detecting the maximum peaks?