I try to use cv2.kmeans
to segment the left auricle DICOM image as mask.
I use the following code to do the k-means binary clustering in OpenCV.
import numpy as np
import cv2
import os
from matplotlib import pyplot as plt
img = cv2.imread('1_LA.jpg')
img2 = img.reshape((-1, 3))
img2 = np.float32(img2)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
ret, label, center = cv2.kmeans(img2, 2, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img.shape))
cv2.imwrite('1_LA_kmeans.jpg', res2)
Then, I can get this segmentation result well.
But how can I extract one of the segmentations as mask?
I have referred other similar questions, and I try to use the code from here.
import numpy as np
import cv2
img = cv2.imread('1_LA.jpg')
Z = np.float32(img.reshape((-1,3)))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 2
_,labels,centers = cv2.kmeans(Z, K, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
labels = labels.reshape((img.shape[:-1]))
reduced = np.uint8(centers)[labels]
result = [np.hstack([img, reduced])]
for i, c in enumerate(centers):
mask = cv2.inRange(labels, i, i)
mask = np.dstack([mask]*3) # Make it 3 channel
ex_img = cv2.bitwise_and(img, mask)
ex_reduced = cv2.bitwise_and(reduced, mask)
result.append(np.hstack([ex_img, ex_reduced]))
cv2.imwrite('kmeans/' + str(i) + '_1.jpg', np.vstack(result))
cv2.imwrite('1_LA_kmeans.jpg', np.vstack(result))
Then, I can get this output.
Becase I want to calculate the area of the left auricle, I need to extract the mask like below.
So, how can I extract one of the binary segmentation results?