3

I am using the lme4 package and running a linear mixed model but I am confused but the output and expect that I am encountering an error even though I do not get an error message. The basic issue is when I fit a model like lmer(Values ~ stimuli + timeperiod + scale(poly(distance.code,3,raw=FALSE))*habitat + wind.speed + (1|location.code), data=df, REML=FALSE) and then look at the results using something like summary I see all the model fixed (and random) effects as I would expect however the habitat effect is always displayed as habitatForest. Like this:

Fixed effects:
                                                            Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                                                996.63179    8.16633   31.22730 122.042  < 2e-16 ***
stimuliBHCO                                                 -3.57541    1.28877 8750.89273  -2.774 0.005544 ** 
stimuliCOHA                                                -10.17037    1.29546 8754.17156  -7.851 4.62e-15 ***
timeperiod                                                   0.19900    0.05516 8744.95307   3.608 0.000310 ***
scale(poly(distance.code, 3, raw = FALSE))1                 -3.87613    0.71431 8745.70773  -5.426 5.90e-08 ***
scale(poly(distance.code, 3, raw = FALSE))2                  2.65854    0.71463 8745.19353   3.720 0.000200 ***
scale(poly(distance.code, 3, raw = FALSE))3                  4.66340    0.72262 8745.67948   6.453 1.15e-10 ***
habitatForest                                              -68.82430   11.83009   29.95226  -5.818 2.34e-06 ***
wind.speed                                                  -0.35853    0.07631 8403.15191  -4.698 2.66e-06 ***
scale(poly(distance.code, 3, raw = FALSE))1:habitatForest    2.89860    1.03891 8745.46534   2.790 0.005282 ** 
scale(poly(distance.code, 3, raw = FALSE))2:habitatForest   -3.49758    1.03829 8745.11371  -3.369 0.000759 ***
scale(poly(distance.code, 3, raw = FALSE))3:habitatForest   -4.67300    1.03913 8745.30579  -4.497 6.98e-06 ***
---

This is happening even though there are two levels of habitat (Forest and Grassland) at first, I thought this might be because my model had an interaction term but it happens when I try a simpler model like lmer(Values ~ stimuli + timeperiod + distance.code + habitat + wind.speed + (1|location.code), data=ex.df, REML=FALSE)

Why would it say "habitatForest" and not just "habitat" or if it were going to include a factor by name why not say "habitatForest" and "habitatGrassland"?

A quick look at the expected output from this function here: https://rpubs.com/palday/mixed-interactions or here: https://ase.tufts.edu/bugs/guide/assets/mixed_model_guide.html (among others) shows that the out put that I am getting is not what is expected or normal. Other output I have seen simply have factors with two levels, like mine, as a single line (eg habitat).

Here is a portion of the data I am using. I used dput and subseting to produce this. I couldn't figure out how to make the data set smaller and still reproduce the error so I apologize if this is too large. The data set that it comes from is MUCH bigger! (also please let me know if I have used dput incorrectly.(Still new to R and stackoverflow)

structure(list(location.code = structure(c(1L, 1L, 1L, 2L, 2L, 
2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 
4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 
4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 
4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
4L, 3L, 3L, 3L, 4L, 4L, 4L), .Label = c("BSF1", "BSG1", "RLF3", 
"RLG3", "CCBSF1", "CCBSG1", "CPF1", "CPF2", "CPG1", "CPG2", "OSG1", 
"OSG2", "RLF4", "RLF5", "RLF1", "RLF2", "RLG1", "RLG2", "BNPF1", 
"BNPG1", "OSG3", "OSF1", "CMG3", "CMF1", "BSG2", "BSG3", "WSF1", 
"WSF2", "HPG1", "HPG2"), class = "factor"), habitat = structure(c(2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L), .Label = c("Grassland", 
"Forest"), class = "factor"), distance.code = c(0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 
30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 0L, 60L, 0L, 30L, 60L, 
0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 60L, 0L, 30L, 
60L), stimuli = structure(c(3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 
2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 
3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 
2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 
2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 
3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 
2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
1L, 1L, 1L), .Label = c("FOSP", "BHCO", "COHA", "YEWA", "TUTI"
), class = "factor"), wind.speed = c(0.8, 0.8, 0.8, 0.2, 0.2, 
0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 
0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 
0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 
0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 
0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 
0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.2, 0.2, 
0.2, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 
55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 
65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 
55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 
0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 
65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 
65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 
55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 
0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 
65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0.9, 0.9, 0.9, 65, 65, 65, 65, 65, 55, 55, 55, 50, 50, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9, 65, 
65, 65, 65, 65, 55, 55, 55, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0.9, 0.9, 0.9), timeperiod = c(6L, 6L, 6L, 
6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 
9L, 9L, 9L, 9L, 9L, 11L, 11L, 11L, 11L, 11L, 11L, 13L, 13L, 13L, 
13L, 13L, 13L, 15L, 15L, 15L, 15L, 15L, 15L, 17L, 17L, 17L, 17L, 
17L, 17L, 19L, 19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 
20L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L, 22L, 
23L, 23L, 23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 19L, 19L, 19L, 19L, 19L, 19L, 
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 21L, 21L, 
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 
24L, 24L, 24L, 24L, 24L, 24L), Values = c(910.721895276374, 922.652711611841, 
926.219785713456, 1030.28919690464, 1121.98321368732, 992.741416151102, 
910.878353926705, 920.201901019659, 922.134996121665, 992.059286431433, 
1042.05240231832, 1018.99804250179, 911.976009884021, 918.215389274037, 
931.037495260958, 981.032280455129, 983.700699744073, 989.716307418049, 
911.476759038955, 918.554393750162, 920.391856289719, 994.583211567691, 
1006.58290843226, 1005.52479816571, 908.665064025178, 917.940176257067, 
922.746174825048, 986.419049170517, 1042.41789735969, 1082.89658057517, 
916.02310296116, 918.254868924698, 931.01648294424, 982.154409713674, 
1008.54477137219, 996.577798511801, 912.914857937818, 916.937508116615, 
920.933077377339, 997.669828575817, 1007.44452218386, 1151.25894192961, 
909.463528658898, 915.293665875472, 921.917039784441, 983.866984633392, 
1002.04551764872, 986.791628665069, 907.695668282537, 917.845214744473, 
932.330755620455, 972.609449456089, 1155.55960936774, 1083.40557091613, 
909.903267624225, 914.846316952797, 921.279328283221, 1000.3672969178, 
1021.78461788922, 1011.40975353271, 915.037273600535, 914.099859036178, 
924.116937361394, 994.428182266452, 1123.09745015276, 1004.1485272116, 
914.431649376896, 915.27037594587, 929.411251949862, 974.273124973661, 
1145.99211507205, 1013.58184367388, 913.467056616881, 920.213007520924, 
919.794369158301, 983.816025282468, 1103.11322201674, 974.792027063404, 
910.532609655114, 917.616832229923, 923.462599912213, 1015.24811721269, 
1070.61183211249, 1016.57332551186, 910.196695694198, 923.403802532832, 
905.400995326023, 1036.98011238981, 963.147077473505, 916.899569521736, 
931.240844862156, 919.11781354823, 995.408916523572, 960.825305234446, 
1026.22960551445, 1000.13773127026, 962.347584090332, 904.090295814044, 
908.836747102913, 928.867625382891, 918.100799763641, 906.282906701285, 
913.146312873635, 977.094140033575, 972.599778534534, 964.658406857446, 
921.91272768213, 910.507770576621, 942.269786765654, 1014.34022271036, 
1128.29327664605, 1043.1365958913, 919.185972424773, 925.486310755197, 
908.769520270226, 1030.20866627018, 956.104935565803, 922.01947330213, 
934.451182538208, 928.626906337293, 986.326936258622, 1003.40797963907, 
1021.91264348048, 995.68658929192, 993.102343807935, 901.633626404701, 
908.255562868123, 922.840049924103, 917.012733437446, 907.541530752433, 
915.050696506642, 983.542956895186, 972.236377246083, 965.082329354352, 
918.337944633569, 910.137012141557, 952.89462134025, 977.420371016686, 
1154.17994731565, 1022.82998099991, 927.061613377597, 926.745527716988, 
908.284054932259, 966.157586219165, 974.986841619676, 916.559494755925, 
935.817296050643, 918.835719171662, 1023.62078549133, 1009.23121097376, 
1005.81651905991, 981.715747809821, 953.127134375762, 902.809201411559, 
907.462229880533, 921.595454423298, 919.198277947855, 904.969515265664, 
913.438353334218, 974.889830301362, 970.58615968713, 963.029605541189, 
915.889893279581, 908.147726780027, 942.742415528349, 979.939535179807, 
1153.51966568673, 1020.93502990084, 916.246150801212, 936.016759720656, 
914.4488779132, 962.397352323664, 986.957848140285, 985.364195731404, 
932.548910038465, 917.363220594089, 1085.89850605988, 1031.66330597084, 
1005.64983154588, 991.988118229379, 975.384741587994, 902.60240793926, 
907.989086075871, 923.287310593779, 912.878571722023, 904.107623756648, 
905.563259817979, 991.530368160932, 975.190212414434, 965.951810135591, 
915.334621878897, 910.857441830446, 936.093336975328, 972.074491630181, 
1106.77459226532, 993.45400883741, 951.911391767329, 927.688604859773, 
915.194279622847, 971.414103170297, 956.138106650696, 965.458656222347, 
944.097918792458, 947.157460200658, 1029.14870726558, 992.151638322899, 
954.129642526236, 981.48182339388, 968.10870393618, 906.941701681267, 
917.956716926981, 923.05649603805, 934.459432014683, 922.801034508827, 
920.724850575215, 981.478432929603, 1012.67364507927, 966.471299899978, 
912.640460101352, 906.34455384334, 923.738349342148, 970.987788560016, 
1210.42940542072, 975.753397539076, 911.747488522664, 928.34872697947, 
910.852487444859, 982.304620375747, 1028.52794775628, 913.408967803895, 
934.334726415048, 916.354017093653, 1036.08727658415, 974.408618327141, 
1004.71633485176, 995.142763465394, 987.00017276687, 906.86826042139, 
915.355833226192, 930.395950341189, 911.742114273539, 905.725754800821, 
912.194776217353, 979.488696998854, 998.766511802223, 968.436523426865, 
916.299279627464, 907.645161223541, 925.30056793674, 978.067851389738, 
1142.91274685359, 1001.53234105611, 916.842758017232, 924.907983103717, 
922.470305986631, 992.855613565408, 955.757560902304, 929.20232030375, 
943.535934437766, 923.58180450271, 1035.68330820385, 962.09501965608, 
1035.71434011945, 999.021624049638, 1037.74929152155, 904.65540329816, 
907.898446182233, 915.586965865012, 912.540978342886, 904.648950841522, 
910.146698786639, 970.655222414677, 969.045225438776, 961.588678057607, 
922.252864714149, 904.866433981365, 921.496292021655, 971.871605044557, 
1075.02261709497, 1018.63215987506, 925.837889075039, 937.313874872585, 
919.393974179406, 984.865480173384, 998.38173566307, 923.591922218561, 
935.764591123357, 914.144404904734, 1064.07484543951, 1009.55385037395, 
1003.07982307794, 1019.96770677478, 1023.43370663799, 1075.23648079772, 
918.40638740207, 930.381596850856, 911.431923384541, 908.158538518039, 
913.917742396318, 972.975539521988, 969.261073622988, 966.900828461146, 
912.922987528198, 906.204515258546, 917.349668426986, 965.167090686302, 
1033.80724280751, 1019.96323854891, 923.466492256566, 923.247012056591, 
911.896005256495, 983.55323734271, 987.195939413696, 948.013535459932, 
946.283282150572, 946.996017019961, 1018.55920835599, 983.790383328001, 
1044.1241515621, 1025.44806232873, 1013.07125415424, 936.438305947314, 
914.845558304809, 919.627558974215, 912.08306092659, 905.506361055768, 
925.863591354922, 980.84672626416, 1034.50509678374, 999.432501149952, 
914.013428128551, 903.385280147577, 914.982720974316, 987.521728519027, 
1026.27371444455, 1003.6659923071, 936.860089156893, 922.376363123921, 
909.301601087255, 949.125313633903, 983.891808931205, 928.514242776379, 
931.528375870523, 934.663002673557, 983.163630767407, 958.520107194186, 
1028.60002280789, 1027.26325499148, 1026.49504978946, 904.375575893285, 
912.523756638651, 919.179127414697, 913.641605762865, 905.043751380124, 
918.017612913947, 966.955539088111, 1083.03489991906, 982.779995986195, 
913.039005945342, 901.569366267589, 924.344189118069, 986.456388413752, 
1053.70140237407, 1012.4655295529, 918.216939699045, 924.376017342816, 
912.32335834515, 962.020663167786, 968.751653626515, 923.781426521514, 
934.702280304594, 945.072040784087, 972.171048113648, 980.160384144599, 
1029.12422797868, 1045.60159108586, 1069.71097019503, 904.989955563463, 
911.137606736246, 913.282276988181, 911.62618760385, 904.022814213797, 
917.471586361699, 969.239603596626, 1092.64417075988, 995.598256664543, 
911.352468377778, 903.930535551161, 934.598647851096, 968.529282541217, 
1014.22774561852, 992.123001836286, 955.008951781314, 928.638327604534, 
930.057703919378, 979.117036821698, 961.435436233545, 927.430280788518, 
933.188144311621, 938.849731346915, 975.793676023678, 984.576641002029, 
953.148108722352, 1025.14511979605, 987.536969976085, 904.469118373204, 
919.724696002539, 921.494112907094, 933.99081130992, 910.883621211755, 
919.830805764804, 973.217375644616, 1097.82345512272, 955.321702833728, 
914.950887550846, 907.869650845588, 930.21996042144, 988.365255219924, 
1072.82537699421, 941.505101156388, 912.978755227237, 924.00211814663, 
926.073413421038, 975.963524978988, 966.347030574186, 927.813889117707, 
938.87057229942, 937.20592642584, 1049.77079831674, 993.369595475566, 
941.988672609005, 1036.52896057029, 1025.79874961742, 909.778142305324, 
926.05520033663, 930.593948095488, 927.731349235947, 909.012240248148, 
918.177023640935, 965.119279536339, 1100.04708794994, 950.187396378294, 
913.95540287581, 908.285198789598, 928.585928045517, 1009.11449170465, 
1048.43494462072, 1070.81842375631, 919.615682872958, 927.180388372158, 
911.229890874478, 979.675336133848, 975.987038362197, 936.015685237366, 
944.935422587313, 934.084922337254, 1065.1158215132, 960.558846324124, 
954.324007605299, 1036.19891812821, 1000.52619841385, 904.622130948163, 
911.66456482634, 952.40730926852, 925.617846758624, 907.103270618455, 
921.775155162068, 962.660086144894, 1089.5423829539, 976.343009650736, 
917.002530477079, 905.207509685187, 920.30422426818, 985.37894037379, 
1032.27384329955, 974.803996932782)), class = "data.frame", row.names = c(85L, 
86L, 87L, 89L, 90L, 91L, 99L, 100L, 101L, 103L, 104L, 105L, 113L, 
114L, 115L, 117L, 118L, 119L, 127L, 128L, 129L, 131L, 132L, 133L, 
141L, 142L, 143L, 145L, 146L, 147L, 155L, 156L, 157L, 159L, 160L, 
161L, 169L, 170L, 171L, 173L, 174L, 175L, 183L, 184L, 185L, 187L, 
188L, 189L, 197L, 198L, 199L, 201L, 202L, 203L, 211L, 212L, 213L, 
215L, 216L, 217L, 225L, 226L, 227L, 229L, 230L, 231L, 239L, 240L, 
241L, 243L, 244L, 245L, 253L, 254L, 255L, 257L, 258L, 259L, 267L, 
268L, 269L, 271L, 272L, 273L, 615L, 616L, 617L, 619L, 620L, 622L, 
623L, 624L, 626L, 627L, 629L, 630L, 631L, 640L, 641L, 642L, 643L, 
644L, 645L, 647L, 648L, 649L, 651L, 652L, 653L, 655L, 656L, 657L, 
659L, 660L, 661L, 663L, 664L, 666L, 667L, 668L, 670L, 671L, 673L, 
674L, 675L, 684L, 685L, 686L, 687L, 688L, 689L, 691L, 692L, 693L, 
695L, 696L, 697L, 699L, 700L, 701L, 703L, 704L, 705L, 707L, 708L, 
710L, 711L, 712L, 714L, 715L, 717L, 718L, 719L, 728L, 729L, 730L, 
731L, 732L, 733L, 735L, 736L, 737L, 739L, 740L, 741L, 743L, 744L, 
745L, 747L, 748L, 749L, 751L, 752L, 754L, 755L, 756L, 758L, 759L, 
761L, 762L, 763L, 772L, 773L, 774L, 775L, 776L, 777L, 779L, 780L, 
781L, 783L, 784L, 785L, 787L, 788L, 789L, 791L, 792L, 793L, 795L, 
796L, 798L, 799L, 800L, 802L, 803L, 805L, 806L, 807L, 816L, 817L, 
818L, 819L, 820L, 821L, 823L, 824L, 825L, 827L, 828L, 829L, 831L, 
832L, 833L, 835L, 836L, 837L, 839L, 840L, 842L, 843L, 844L, 846L, 
847L, 849L, 850L, 851L, 860L, 861L, 862L, 863L, 864L, 865L, 867L, 
868L, 869L, 871L, 872L, 873L, 875L, 876L, 877L, 879L, 880L, 881L, 
883L, 884L, 886L, 887L, 888L, 890L, 891L, 893L, 894L, 895L, 904L, 
905L, 906L, 907L, 908L, 909L, 911L, 912L, 913L, 915L, 916L, 917L, 
919L, 920L, 921L, 923L, 924L, 925L, 927L, 928L, 930L, 931L, 932L, 
934L, 935L, 937L, 938L, 939L, 948L, 949L, 950L, 951L, 952L, 953L, 
955L, 956L, 957L, 959L, 960L, 961L, 963L, 964L, 965L, 967L, 968L, 
969L, 971L, 972L, 974L, 975L, 976L, 978L, 979L, 981L, 982L, 983L, 
992L, 993L, 994L, 995L, 996L, 997L, 999L, 1000L, 1001L, 1003L, 
1004L, 1005L, 1007L, 1008L, 1009L, 1011L, 1012L, 1013L, 1015L, 
1016L, 1018L, 1019L, 1020L, 1022L, 1023L, 1025L, 1026L, 1027L, 
1036L, 1037L, 1038L, 1039L, 1040L, 1041L, 1043L, 1044L, 1045L, 
1047L, 1048L, 1049L, 1051L, 1052L, 1053L, 1055L, 1056L, 1057L, 
1059L, 1060L, 1062L, 1063L, 1064L, 1066L, 1067L, 1069L, 1070L, 
1071L, 1080L, 1081L, 1082L, 1083L, 1084L, 1085L, 1087L, 1088L, 
1089L, 1091L, 1092L, 1093L, 1095L, 1096L, 1097L, 1099L, 1100L, 
1101L, 1103L, 1104L, 1106L, 1107L, 1108L, 1110L, 1111L, 1113L, 
1114L, 1115L, 1124L, 1125L, 1126L, 1127L, 1128L, 1129L, 1131L, 
1132L, 1133L, 1135L, 1136L, 1137L, 1139L, 1140L, 1141L, 1143L, 
1144L, 1145L, 1147L, 1148L, 1150L, 1151L, 1152L, 1154L, 1155L, 
1157L, 1158L, 1159L, 1168L, 1169L, 1170L, 1171L, 1172L, 1173L, 
1175L, 1176L, 1177L, 1179L, 1180L, 1181L, 1183L, 1184L, 1185L, 
1187L, 1188L, 1189L, 1191L, 1192L, 1194L, 1195L, 1196L, 1198L, 
1199L, 1201L, 1202L, 1203L, 1212L, 1213L, 1214L, 1215L, 1216L, 
1217L, 1219L, 1220L, 1221L, 1223L, 1224L, 1225L, 1227L, 1228L, 
1229L))

Here is the code (I think) that would be needed to fit the model and see the summary after the above data is loaded:

library(lme4)
library(lmerTest)

fit1 <- lmer(Values ~ stimuli + timeperiod + scale(poly(distance.code,3,raw=FALSE))*habitat + wind.speed + (1|location.code), data=df, REML=FALSE)
fit2 <- lmer(Values ~ stimuli + timeperiod + distance.code + habitat + wind.speed + (1|location.code), data=ex.df, REML=FALSE)

summary(fit1)
#or
summary(fit2)

I think this has to do with my data structure and the programming but if it is actually something to do with the stats I am happy to take this post down and re-post over at the stats stackexchange.

Thanks for any help!

parksnrec1
  • 69
  • 7
  • 4
    short answer: by default, contrasts in a linear model in R (whether it's lm or lmer) are coded with n-1 "dummy variables." Because by default no control group is specified, the first one in the factor level ordering becomes the control. Your factor is ordered with grassland first and forest second. So the coefficient is the effect of the habitat being forest habitat, compared to the reference level, which is grassland in this case. If you switched the habitat factor level ordering, you would get `habitatGrassland` as the coefficient instead. – qdread Feb 09 '22 at 20:03
  • 2
    You only need n-1 parameters to differentiate between n groups -- thus there's only one habitat coefficient here because n=2. – qdread Feb 09 '22 at 20:04
  • 4
    Here is a potential tutorial you can use if you want to play with how your model contrasts are set up: https://marissabarlaz.github.io/portfolio/contrastcoding/ – qdread Feb 09 '22 at 20:06
  • 1
    @qdread, I looked for a duplicate but there doesn't seem to be one. Could you post your comments as an answer please? (See also https://stackoverflow.com/questions/70459515/is-there-a-way-to-display-the-reference-category-in-a-regression-output-in-r/70459991#70459991) – Ben Bolker Feb 10 '22 at 15:41
  • @BenBolker done. I'd welcome any edits if I did not use the proper terminology. – qdread Feb 10 '22 at 16:25

1 Answers1

5

note: although your question is about the lmer() function, this answer also applies to lm() and other R functions that fit linear models.

The way that coefficient estimates from linear models in R are presented can be confusing. To understand what's going on, you need to understand how R fits linear models when the predictor is a factor variable.

Coefficients on factor variables in R linear models

Before we look at factor variables, let's look at the more straightforward situation where the predictor is continuous. In your example dataset, one of the predictors is wind speed (continuous variable). The estimated coefficient is about -0.35. It's easy to interpret this: averaged across the other predictors, for every increase of 1 km/h in wind speed, your response value is predicted to decrease by 0.35.

But what about if the predictor is a factor? A categorical variable cannot increase or decrease by 1. Instead it can take several discrete values. So what the lmer() or lm() function does by default is automatically code your factor variable as a set of so-called "dummy variables." Dummy variables are binary (they can take values of 0 or 1). If the factor variable has n levels, you need n-1 dummy variables to encode it. The reference level or control group acts like an intercept.

In the case of your habitat variable, there are only 2 levels so you have only 1 dummy variable which will be 0 if habitat is not Forest and 1 if it is Forest. Now we can interpret the coefficient estimate of -68.8: the average value of your response is expected to be 68.8 less in forest habitat relative to the reference level of grassland habitat. You don't need a second dummy variable for grassland because you only need to estimate the one coefficient to compare the two habitats.

If you had a third habitat, let's say wetland, there would be a second dummy variable that would be 0 if not wetland and 1 if wetland. The coefficient estimate there would be the expected difference between the value of the response variable in wetland habitat compared to grassland habitat. Grassland will be the reference level for all the coefficients.

Default setting of reference level

Now to directly address your question of why habitatForest is the coefficient name.

Because by default no reference level or control group is specified, the first one in the factor level ordering becomes the reference level to which all other levels are compared. Then the coefficients are named by appending the variable's name to the name of the level being compared to the reference level. Your factor is ordered with grassland first and forest second. So the coefficient is the effect of the habitat being forest habitat, compared to the reference level, which is grassland in this case. If you switched the habitat factor level ordering, Forest would be the reference level and you would get habitatGrassland as the coefficient instead. (Note that default factor level ordering is alphabetical, so without specifically ordering the factor levels as you seem to have done, Forest would be the reference level by default).

Incidentally, the two links you give in your question (guides to mixed models from Phillip Alday and Tufts) do in fact have the same kind of output as you are getting. For example in Alday's tutorial, the factor recipe has 3 levels: A, B, and C. There are two coefficients in the fixed effects summary, recipeB and recipeC, just as you would expect from dummy coding using A as reference level. You may be confusing the fixed effects summary with the ANOVA table presented elsewhere in his post. The ANOVA table does only have a single line for recipe which gives you the ratio of variance due to recipe (across all its levels) and the total variance. So that would only be one ratio regardless of how many levels recipe has.

Further reading

This is not the place for a full discussion of contrast coding in linear models in R. The dummy coding (which you may also see called one-hot encoding) I described here is just one way to do it. These resources may be helpful:

qdread
  • 3,389
  • 19
  • 36
  • Thanks so much, @qdread for your thorough answer! I have been looking over the resources and I think some of my confusion was arising from the way the results of an `anova()` is presented as compared to the full results. I am trying to compare the results of a lmm to a Robust lmm and some of the differences in the two outputs were not immediately clear to me. – parksnrec1 Feb 11 '22 at 16:01
  • 1
    It might also be worth adding something about `emmeans` to this answer (i.e. the answer to "how can I see the values for those levels anyway?") – Ben Bolker Feb 18 '22 at 22:07