The reference level is the one that is missing in the summary, because the coefficients of the other levels are the contrasts to the reference level, i.e. the intercept actually represents the mean in the reference category.
iris <- transform(iris, Species_=factor(Species)) ## create factor
summary(lm(Sepal.Length ~ Petal.Length + Species_, iris))$coe
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 3.6835266 0.10609608 34.718780 1.968671e-72
# Petal.Length 0.9045646 0.06478559 13.962436 1.121002e-28
# Species_versicolor -1.6009717 0.19346616 -8.275203 7.371529e-14
# Species_virginica -2.1176692 0.27346121 -7.743947 1.480296e-12
You could remove the intercept, to get the missing level displayed, but that makes not much sense. You then just get the means of each level without a reference, however you are interested in the contrast between the reference level and the other levels.
summary(lm(Sepal.Length ~ 0 + Petal.Length + Species_, iris))$coe
# Estimate Std. Error t value Pr(>|t|)
# Petal.Length 0.9045646 0.06478559 13.962436 1.121002e-28
# Species_setosa 3.6835266 0.10609608 34.718780 1.968671e-72
# Species_versicolor 2.0825548 0.28009598 7.435147 8.171219e-12
# Species_virginica 1.5658574 0.36285224 4.315413 2.921850e-05
If you're not sure, the reference level is always the first level of the factor.
levels(iris$Species_)[1]
# [1] "setosa"
To prove that, specify a different reference level and see if it's first.
iris$Species_ <- relevel(iris$Species_, ref='versicolor')
levels(iris$Species_)[1]
# [1] "versicolor"
It is common to refer to the reference level in a note under the table in the report, and I recommend that you do the same.