I am running a linear mixed model for a dataset Developmental trajectory of 2 groups- assessed at 3 timepoints on a number of different measures. Predictor variables are age and maternal education. I am using nlme and ggplot2 packages. Here is my final model (GM_RAW is the dependent variable)
Model_5<-lme(GM_RAW~timepoint*Group+age+Maternal_Education, data=dat,
random=~timepoint|ID,method="ML", na.action=na.omit,control=list(opt="optim"))
summary(Model_5)
I have plotted individual trajectories based on the raw data but I want to add the information from the predicted lines from the model for my 2 groups. I have tried various suggestions posted on stack overflow but none seem to work
dat$gmpred<-predict(Model_5)
GrossMotor<-ggplot(dat,aes(x=as.numeric(timepoint),y=GM_RAW,colour=Group))+
geom_point()+ geom_line(aes(group=ID))
GrossMotor + geom_line(data=dat, aes(y=gmpred))
I want to show the intercept and slope for my 2 groups on the final graph
some sample data
"","ID","timepoint","Maternal_Education","age","Group","GM_RAW"
"1",3012,"5 months",NA,188,"Typical Group",10
"2",3089,"5 months",NA,182,"Typical Group",9
"3",3012,"10 months",NA,328,"Typical Group",13
"4",3004,"5 months","Tertiary postgraduate",163,"Typical Group",6
"5",3008,"5 months","Tertiary postgraduate",171,"Typical Group",4
"6",3023,"5 months","Tertiary postgraduate",170,"Typical Group",8
"7",3063,"5 months","Tertiary postgraduate",181,"Typical Group",10
"8",3071,"5 months","Tertiary postgraduate",151,"Typical Group",8
"9",3074,"5 months","Tertiary postgraduate",183,"Typical Group",9
"10",3075,"5 months","Tertiary postgraduate",165,"Typical Group",9
"11",3087,"5 months","Tertiary postgraduate",172,"Typical Group",6
"12",3104,"5 months","Tertiary postgraduate",180,"Typical Group",7
"13",3115,"5 months","Tertiary postgraduate",199,"Typical Group",8
"14",3142,"5 months","Tertiary postgraduate",201,"Typical Group",9
"15",3161,"5 months","Tertiary postgraduate",189,"Typical Group",7
"16",3162,"5 months","Tertiary postgraduate",201,"Typical Group",8
"17",4002,"5 months","Tertiary postgraduate",202,"NF1",8
"18",4024,"5 months","Tertiary postgraduate",167,"NF1",8
"19",3004,"10 months","Tertiary postgraduate",315,"Typical Group",9
"20",3008,"10 months","Tertiary postgraduate",341,"Typical Group",9
"21",3023,"10 months","Tertiary postgraduate",358,"Typical Group",14
"22",3063,"10 months","Tertiary postgraduate",293,"Typical Group",17
"23",3071,"10 months","Tertiary postgraduate",302,"Typical Group",12
"24",3074,"10 months","Tertiary postgraduate",333,"Typical Group",12
"25",3075,"10 months","Tertiary postgraduate",318,"Typical Group",11
"26",3078,"10 months","Tertiary postgraduate",304,"Typical Group",9
"27",3087,"10 months","Tertiary postgraduate",335,"Typical Group",13
"28",3104,"10 months","Tertiary postgraduate",294,"Typical Group",10
"29",3115,"10 months","Tertiary postgraduate",305,"Typical Group",11
"30",3142,"10 months","Tertiary postgraduate",327,"Typical Group",11
"31",3161,"10 months","Tertiary postgraduate",328,"Typical Group",12
"32",3162,"10 months","Tertiary postgraduate",333,"Typical Group",10
"33",4002,"10 months","Tertiary postgraduate",335,"NF1",11
"34",4009,"10 months","Tertiary postgraduate",320,"NF1",11
"35",4024,"10 months","Tertiary postgraduate",351,"NF1",13
"36",3004,"14 months","Tertiary postgraduate",438,"Typical Group",21
"37",3008,"14 months","Tertiary postgraduate",460,"Typical Group",9
"38",3023,"14 months","Tertiary postgraduate",471,"Typical Group",18
"39",3063,"14 months","Tertiary postgraduate",445,"Typical Group",20