I think there is no hope for a faster algorithm: you have to compute the combinations to count them. However, if there is threshold of co-occurrences under which you are not interested, you can rty to reduce the complexity of the algorithm. In both cases, there is a hope for less space complexity.
Let's take a small example:
>>> actions = [[('d', 'r'), ('c', 'e'),('', 'e')],
... [('r', 'e'), ('c', 'e'),('d', 'r')],
... [('a', 'b'), ('c', 'e'),('c', 'h')]]
General answer
This answer is probably the best for a large list of lists, but you can avoid creating intermediary lists. First, create an iterable on all present pairs of elements (elements are pairs too in your case, but that doesn't matter):
>>> import itertools
>>> it = itertools.chain.from_iterable(itertools.combinations(pair_list, 2) for pair_list in actions)
If we want to see the result, we have to consume the iteratable:
>>> list(it)
[(('d', 'r'), ('c', 'e')), (('d', 'r'), ('', 'e')), (('c', 'e'), ('', 'e')), (('r', 'e'), ('c', 'e')), (('r', 'e'), ('d', 'r')), (('c', 'e'), ('d', 'r')), (('a', 'b'), ('c', 'e')), (('a', 'b'), ('c', 'h')), (('c', 'e'), ('c', 'h'))]
Then count the sorted pairs (with a fresh it
!)
>>> it = itertools.chain.from_iterable(itertools.combinations(pair_list, 2) for pair_list in actions)
>>> from collections import Counter
>>> c = Counter((a,b) if a<=b else (b,a) for a,b in it)
>>> c
Counter({(('c', 'e'), ('d', 'r')): 2, (('', 'e'), ('d', 'r')): 1, (('', 'e'), ('c', 'e')): 1, (('c', 'e'), ('r', 'e')): 1, (('d', 'r'), ('r', 'e')): 1, (('a', 'b'), ('c', 'e')): 1, (('a', 'b'), ('c', 'h')): 1, (('c', 'e'), ('c', 'h')): 1})
>>> c.most_common(2)
[((('c', 'e'), ('d', 'r')), 2), ((('', 'e'), ('d', 'r')), 1)]
At least in term of space, this solution should be efficient since everything is lazy and the number of elements of the Counter
is the number of combinations from elements in the same list, that is at most N(N-1)/2
where N
is the number of distinct elements in all the lists ("at most" because some elements never "meet" each other and therefore some combination never happen).
The time complexity is O(M . L^2)
where M
is the number of lists and L
the size of the largest list.
With a threshold on the co-occurences number
I assume that all elements in a list are distinct. The key idea is that if an element is present in only one list, then this element has strictly no chance to beat anyone at this game: it will have 1
co-occurence with all his neighbors, and 0 with the elements of other lists. If there are a lot of "orphans", it might be useful to remove them before processing computing the combinations:
>>> d = Counter(itertools.chain.from_iterable(actions))
>>> d
Counter({('c', 'e'): 3, ('d', 'r'): 2, ('', 'e'): 1, ('r', 'e'): 1, ('a', 'b'): 1, ('c', 'h'): 1})
>>> orphans = set(e for e, c in d.items() if c <= 1)
>>> orphans
{('a', 'b'), ('r', 'e'), ('c', 'h'), ('', 'e')}
Now, try the same algorithm:
>>> it = itertools.chain.from_iterable(itertools.combinations((p for p in pair_list if p not in orphans), 2) for pair_list in actions)
>>> c = Counter((a,b) if a<=b else (b,a) for a,b in it)
>>> c
Counter({(('c', 'e'), ('d', 'r')): 2})
Note the comprehension: no brackets but parentheses.
If you have K orphans in a list of N elements, your time complexity for that list falls from N(N-1)/2
to (N-K)(N-K-1)/2
, that is (if I'm not mistaken!) K.(2N-K-1)
combinations less.
This can be generalized: if an element is present in two or less lists, then it will have at most 2 co-occurrences with other elements, and so on.
If this is still to slow, then switch to a faster language.