I thought I'd show how one might approach this in Mathematica. While not the simplest thing to code, it does have flexibility. Also bear in mind that the author is fairly inept when it comes to graphics, so there might be easier and/or better ways to go about it.
offset[pt_, center_, eps_] := center + (1 + eps)*(pt - center);
pointfunc[{pt_List, center_List, ptname_String}, siz_,
eps_] := {PointSize[siz], Point[pt],
Inset[ptname, offset[pt, center, eps]]};
Manipulate[Module[
{plot1, plot2, plot3, siz = .02, ab = bb - aa, bc = cc - bb,
ac = cc - aa, cen = (aa + bb)/2., x, y, soln, dd, mm, ff, lens,
pts, eps = .15},
plot1 = ListLinePlot[{aa, bb, cc, aa}];
plot2 = Graphics[Circle[cen, Norm[ab]/2.]];
soln = NSolve[{Norm[ac]*({x, y} - aa).ab -
Norm[ab]*({x, y} - aa).ac ==
0, ({x, y} - cc).({-1, 1}*Reverse[bc]) == 0}, {x, y}];
dd = {x, y} /. soln[[1]];
mm = (dd + aa)/2;
soln = NSolve[{({x, y} - cen).({x, y} - cen) - ab.ab/4 ==
0, ({x, y} - cc).({-1, 1}*Reverse[mm - cc]) == 0}, {x, y}];
ff = {x, y} /. soln;
lens = Map[Norm[# - cc] &, ff];
ff = If[OrderedQ[lens], ff[[1]], ff[[2]]];
pts = {{aa, cen, "A"}, {bb, cen, "B"}, {cc, cen, "C"}, {dd, cen,
"D"}, {ff, cen, "F"}, {mm, cen, "M"}, {cen, ff, "O"}};
pts = Map[pointfunc[#, siz, eps] &, pts];
plot3 = Graphics[Join[pts, {Line[{aa, dd}], Line[{cc, mm}]}]];
Show[plot1, plot2, plot3, PlotRange -> {{-.2, 1.1}, {-.2, 1.2}},
AspectRatio -> Full, Axes -> False]],
{{aa, {0, 0}}, {0, 0}, {1, 1}, Locator},
{{bb, {.8, .7}}, {0, 0}, {1, 1}, Locator},
{{cc, {.1, 1}}, {0, 0}, {1, 1}, Locator},
TrackedSymbols :> None]
Here is a screen shot.

Daniel Lichtblau
Wolfram Research