I have a model that's trains my network using an Iterator; following the new Dataset API pipeline model that's now recommended by Google.
I read tfrecord files, feed data to the network, train nicely, and all is going well, I save my model in the end of the training so I can run Inference on it later. A simplified version of the code is as following:
""" Training and saving """
training_dataset = tf.contrib.data.TFRecordDataset(training_record)
training_dataset = training_dataset.map(ds._path_records_parser)
training_dataset = training_dataset.batch(BATCH_SIZE)
with tf.name_scope("iterators"):
training_iterator = Iterator.from_structure(training_dataset.output_types, training_dataset.output_shapes)
next_training_element = training_iterator.get_next()
training_init_op = training_iterator.make_initializer(training_dataset)
def train(num_epochs):
# compute for the number of epochs
for e in range(1, num_epochs+1):
session.run(training_init_op) #initializing iterator here
while True:
try:
images, labels = session.run(next_training_element)
session.run(optimizer, feed_dict={x: images, y_true: labels})
except tf.errors.OutOfRangeError:
saver_name = './saved_models/ucf-model'
print("Finished Training Epoch {}".format(e))
break
""" Restoring """
# restoring the saved model and its variables
session = tf.Session()
saver = tf.train.import_meta_graph(r'saved_models\ucf-model.meta')
saver.restore(session, tf.train.latest_checkpoint('.\saved_models'))
graph = tf.get_default_graph()
# restoring relevant tensors/ops
accuracy = graph.get_tensor_by_name("accuracy/Mean:0") #the tensor that when evaluated returns the mean accuracy of the batch
testing_iterator = graph.get_operation_by_name("iterators/Iterator") #my iterator used in testing.
next_testing_element = graph.get_operation_by_name("iterators/IteratorGetNext") #the GetNext operator for my iterator
# loading my testing set tfrecords
testing_dataset = tf.contrib.data.TFRecordDataset(testing_record_path)
testing_dataset = testing_dataset.map(ds._path_records_parser, num_threads=4, output_buffer_size=BATCH_SIZE*20)
testing_dataset = testing_dataset.batch(BATCH_SIZE)
testing_init_op = testing_iterator.make_initializer(testing_dataset) #to initialize the dataset
with tf.Session() as session:
session.run(testing_init_op)
while True:
try:
images, labels = session.run(next_testing_element)
accuracy = session.run(accuracy, feed_dict={x: test_images, y_true: test_labels}) #error here, x, y_true not defined
except tf.errors.OutOfRangeError:
break
My problem is mainly when I restore the model. How to feed testing data to the network?
- When I restore my Iterator using
testing_iterator = graph.get_operation_by_name("iterators/Iterator")
,next_testing_element = graph.get_operation_by_name("iterators/IteratorGetNext")
, I get the following error:GetNext() failed because the iterator has not been initialized. Ensure that you have run the initializer operation for this iterator before getting the next element.
- So I did try to initialize my dataset using:
testing_init_op = testing_iterator.make_initializer(testing_dataset))
. I got this error:AttributeError: 'Operation' object has no attribute 'make_initializer'
Another issue is, since an iterator is being used, there's no need to use placeholders in the training_model, as an iterator feed data directly to the graph. But this way, how to restore my feed_dict keys in the 3rd to last line, when I feed data to the "accuracy" op?
EDIT: if someone could suggest a way to add placeholders between the Iterator and the network input, then I could try running the graph by evaluating the "accuracy" tensor while feeding data to the placeholders and ignoring the iterator altogether.