I trained a network with TFRecord input pipeline. In other words, there was no placeholders. Simple example would be:
input, truth = _get_next_batch() # TFRecord. `input` is not a tf.placeholder
net = Model(input)
net.set_loss(truth)
optimizer = tf...(net.loss)
Let's say, I acquired three files, ckpt-20000.meta
, ckpt-20000.data-0000-of-0001
, ckpt-20000.index
. I understood that, later one can import the meta-graph using the .meta
file and access tensors such as:
new_saver = tf.train.import_meta_graph('ckpt-20000.meta')
new_saver.restore(sess, 'ckpt-20000')
logits = tf.get_collection("logits")[0]
However, the meta-graph does not have a placeholder from the beginning in the pipeline. Is there a way that I can use meta-graph and query inference of an input?
For information, in a query application (or a script), I used to define a model with a placeholder and restored model weights (see below). I am wondering if I can just utilize the meta-graph without re-definition since it would be much more simple.
input = tf.placeholder(...)
net = Model(input)
tf.restore(sess, 'ckpt-2000')
lgt = sess.run(net.logits, feed_dict = {input:img})