This is somewhat of a related question to this post:
I have gene expression data for which I'd like to generate a heatmap in plotly.
Data:
require(permute)
set.seed(1)
mat <- rbind(cbind(matrix(rnorm(2500,2,1),nrow=25,ncol=500),matrix(rnorm(2500,-2,1),nrow=25,ncol=500)),
cbind(matrix(rnorm(2500,-2,1),nrow=25,ncol=500),matrix(rnorm(2500,2,1),nrow=25,ncol=500)))
rownames(mat) <- paste("g",1:50,sep=".")
colnames(mat) <- paste("s",1:1000,sep=".")
hc.col <- hclust(dist(t(mat)))
dd.col <- as.dendrogram(hc.col)
col.order <- order.dendrogram(dd.col)
hc.row <- hclust(dist(mat))
dd.row <- as.dendrogram(hc.row)
row.order <- order.dendrogram(dd.row)
mat <- mat[row.order,col.order]
Color the data by intervals of expression:
require(RColorBrewer)
mat.intervals <- cut(mat,breaks=6)
interval.mat <- matrix(mat.intervals,nrow=50,ncol=1000,dimnames=list(rownames(mat),colnames(mat)))
interval.cols <- brewer.pal(6,"Set2")
names(interval.cols) <- levels(mat.intervals)
require(reshape2)
interval.df <- reshape2::melt(interval.mat,varnames=c("gene","sample"),value.name="expr")
interval.cols2 <- rep(interval.cols, each=ncol(mat))
color.df <- data.frame(range=c(0:(2*length(interval.cols)-1)),colors=c(0:(2*length(interval.cols)-1)))
color.df <- setNames(data.frame(color.df$range,color.df$colors),NULL)
for (i in 1:(2*length(interval.cols))) {
color.df[[2]][[i]] <- interval.cols[[(i + 1) / 2]]
color.df[[1]][[i]] <- i/(2*length(interval.cols))-(i %% 2)/(2*length(interval.cols))
}
Plot with plotly:
require(ggplotly)
heatmap.plotly <- plot_ly(z=c(interval.df$expr),x=interval.df$sample,y=interval.df$gene,colors=interval.cols2,type="heatmap",colorscale=color.df,
colorbar=list(title="score",tickmode='array',tickvals=c(1:6),ticktext=names(interval.cols),len=0.2,outlinecolor="white",bordercolor="white",borderwidth=5,bgcolor="white"))
Now I'm trying to customize the x-axis ticks.
Say that interval.df$sample[1:500]
correspond to cluster "A" and interval.df$sample[501:1000]
to cluster "B". I'd like to have 2 x-axis ticks located at 250 and 750 (the middle of the x-axis range of each cluster), and the tick text to be "A" and "B", respectively.
According to the documentation, I thought this would do it:
heatmap.plotly <- plot_ly(z=c(interval.df$expr),x=interval.df$sample,y=interval.df$gene,colors=interval.cols2,type="heatmap",colorscale=color.df,
colorbar=list(title="score",tickmode='array',tickvals=c(1:6),ticktext=names(interval.cols),len=0.2,outlinecolor="white",bordercolor="white",borderwidth=5,bgcolor="white")) %>%
layout(xaxis=list(title="Cluster",tickmode="array",tickvals=c(250,750),ticktext=c("A","B")))
But I see no ticks on the x-axis.
This:
heatmap.plotly <- plot_ly(z=c(interval.df$expr),x=interval.df$sample,y=interval.df$gene,colors=interval.cols2,type="heatmap",colorscale=color.df,
colorbar=list(title="score",tickmode='array',tickvals=c(1:6),ticktext=names(interval.cols),len=0.2,outlinecolor="white",bordercolor="white",borderwidth=5,bgcolor="white")) %>%
layout(xaxis=list(title="Cluster",tick0=250,dtick=500,nticks=2,ticktext=c("A","B")))
prints interval.df$sample[c(250,750)]
rather than c("A","B")
, though in the desired location: