I have a large dataset of string ids, that can fit into memory on a single node in my spark cluster. The issue is that it consumes most of the memory for a single node.
These ids are about 30 characters long. For example:
ids
O2LWk4MAbcrOCWo3IVM0GInelSXfcG
HbDckDXCye20kwu0gfeGpLGWnJ2yif
o43xSMBUJLOKDxkYEQbAEWk4aPQHkm
I am looking to write to file a list of all of the pairs of ids. For example:
id1,id2
O2LWk4MAbcrOCWo3IVM0GInelSXfcG,HbDckDXCye20kwu0gfeGpLGWnJ2yif
O2LWk4MAbcrOCWo3IVM0GInelSXfcG,o43xSMBUJLOKDxkYEQbAEWk4aPQHkm
HbDckDXCye20kwu0gfeGpLGWnJ2yif,O2LWk4MAbcrOCWo3IVM0GInelSXfcG
# etc...
So I need to cross join the dataset on itself. I was hoping to do this on PySpark using a 10 node cluster, but it needs to be memory efficient.