So I have a users df with unique user_ids and a second df with a set of questions. I would then like to merge the dfs so that each user_id is attached to full set of questions:
User Df:
+--------------------------+
|user_id |
+--------------------------+
|GDDVWWIOOKDY4WWBCICM4VOQHQ|
|77VC23NYEWLGHVVS4UMHJEVESU|
|VCOX7HUHTMPFCUOGYWGL4DMIRI|
|XPJBJMABYXLTZCKSONJVBCOXQM|
|QHTPQSFNOA5YEWH6N7FREBMMDM|
|JLQNBYCSC4DGCOHNLRBK5UANWI|
|RWYUOLBKIQMZVYHZJYCQ7SGTKA|
|CR33NGPK2GKK6G35SLZB7TGIJE|
|N6K7URSGH65T5UT6PZHMN62E2U|
|SZMPG3FQQOHGDV23UVXODTQETE|
+--------------------------+
Questions Df
+--------------------+-------------------+-----------------+--------------------+
| category_type| category_subject| question_id| question|
+--------------------+-------------------+-----------------+--------------------+
|Consumer & Lifestyle| Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle| Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle| Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle| Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle| Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle| Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle| Dietary Habits|pdl_diet_identity|Eating habits des...|
| Demographics|Social Demographics|pdl_ethnicity_new| Ethnicity|
| Demographics|Social Demographics|pdl_ethnicity_new| Ethnicity|
| Demographics|Social Demographics|pdl_ethnicity_new| Ethnicity|
+--------------------+-------------------+-----------------+--------------------+
So at the moment I turn the user_ids into a list and loop through them creating new column on questions df creating a temporary df from results. I then union to a final df to save the results for that user_id iteration as per below:
create user_id list:
unique_users_list = users_df \
.select("user_id") \
.agg(f.collect_list('user_id')).collect()[0][0]
create empty final df to append to:
finaldf_schema = StructType([
StructField("category_type", StringType(), False),
StructField("category_subject", StringType(), False),
StructField("question_id", StringType(), False),
StructField("question", StringType(), False),
StructField("user_id", StringType(), False)
])
final_df = spark.createDataFrame([], finaldf_schema)
Then loop through user_id merging to questions df:
for user_id in unique_users_list:
temp_df = questions_df.withColumn("user_id", f.lit(user_id))
final_df = final_df.union(temp_df)
However, I find the performance very slow. Is there a more efficient and faster way to do this please.
Thanks