I've interpolated a spline to fit pixel data from an image with a curve that I would like to straighten. I'm not sure what tools are appropriate to solve this problem. Can someone recommend an approach?
Here's how I'm getting my spline:
import numpy as np
from skimage import io
from scipy import interpolate
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
import networkx as nx
# Read a skeletonized image, return an array of points on the skeleton, and divide them into x and y coordinates
skeleton = io.imread('skeleton.png')
curvepoints = np.where(skeleton==False)
xpoints = curvepoints[1]
ypoints = -curvepoints[0]
# reformats x and y coordinates into a 2-dimensional array
inputarray = np.c_[xpoints, ypoints]
# runs a nearest neighbors algorithm on the coordinate array
clf = NearestNeighbors(2).fit(inputarray)
G = clf.kneighbors_graph()
T = nx.from_scipy_sparse_matrix(G)
# sorts coordinates according to their nearest neighbors order
order = list(nx.dfs_preorder_nodes(T, 0))
xx = xpoints[order]
yy = ypoints[order]
# Loops over all points in the coordinate array as origin, determining which results in the shortest path
paths = [list(nx.dfs_preorder_nodes(T, i)) for i in range(len(inputarray))]
mindist = np.inf
minidx = 0
for i in range(len(inputarray)):
p = paths[i] # order of nodes
ordered = inputarray[p] # ordered nodes
# find cost of that order by the sum of euclidean distances between points (i) and (i+1)
cost = (((ordered[:-1] - ordered[1:])**2).sum(1)).sum()
if cost < mindist:
mindist = cost
minidx = i
opt_order = paths[minidx]
xxx = xpoints[opt_order]
yyy = ypoints[opt_order]
# fits a spline to the ordered coordinates
tckp, u = interpolate.splprep([xxx, yyy], s=3, k=2, nest=-1)
xpointsnew, ypointsnew = interpolate.splev(np.linspace(0,1,270), tckp)
# prints spline variables
print(tckp)
# plots the spline
plt.plot(xpointsnew, ypointsnew, 'r-')
plt.show()
My broader project is to follow the approach outlined in A novel method for straightening curved text-lines in stylistic documents. That article is reasonably detailed in finding the line that describes curved text, but much less so where straightening the curve is concerned. I have trouble visualizing the only reference to straightening that I see is in the abstract:
find the angle between the normal at a point on the curve and the vertical line, and finally visit each point on the text and rotate by their corresponding angles.
I also found Geometric warp of image in python, which seems promising. If I could rectify the spline, I think that would allow me to set a range of target points for the affine transform to map to. Unfortunately, I haven't found an approach to rectify my spline and test it.
Finally, this program implements an algorithm to straighten splines, but the paper on the algorithm is behind a pay wall and I can't make sense of the javascript.
Basically, I'm lost and in need of pointers.
Update
The affine transformation was the only approach I had any idea how to start exploring, so I've been working on that since I posted. I generated a set of destination coordinates by performing an approximate rectification of the curve based on the euclidean distance between points on my b-spline.
From where the last code block left off:
# calculate euclidian distances between adjacent points on the curve
newcoordinates = np.c_[xpointsnew, ypointsnew]
l = len(newcoordinates) - 1
pointsteps = []
for index, obj in enumerate(newcoordinates):
if index < l:
ord1 = np.c_[newcoordinates[index][0], newcoordinates[index][1]]
ord2 = np.c_[newcoordinates[index + 1][0], newcoordinates[index + 1][1]]
length = spatial.distance.cdist(ord1, ord2)
pointsteps.append(length)
# calculate euclidian distance between first point and each consecutive point
xpositions = np.asarray(pointsteps).cumsum()
# compose target coordinates for the line after the transform
targetcoordinates = [(0,0),]
for element in xpositions:
targetcoordinates.append((element, 0))
# perform affine transformation with newcoordinates as control points and targetcoordinates as target coordinates
tform = PiecewiseAffineTransform()
tform.estimate(newcoordinates, targetcoordinates)
I'm presently hung up on errors with the affine transform (scipy.spatial.qhull.QhullError: QH6154 Qhull precision error: Initial simplex is flat (facet 1 is coplanar with the interior point)
), but I'm not sure whether it's because of a problem with how I'm feeding the data in, or because I'm abusing the transform to do my projection.