As a possible starting point, the Fisher-Yates shuffle goes like this.
def swap(xs, a, b):
xs[a], xs[b] = xs[b], xs[a]
def permute(xs):
for a in xrange(len(xs)):
b = random.choice(xrange(a, len(xs)))
swap(xs, a, b)
Perhaps this will do the trick?
def derange(xs):
for a in xrange(len(xs) - 1):
b = random.choice(xrange(a + 1, len(xs) - 1))
swap(xs, a, b)
swap(len(xs) - 1, random.choice(xrange(n - 1))
Here's the version described by Vatine:
def derange(xs):
for a in xrange(1, len(xs)):
b = random.choice(xrange(0, a))
swap(xs, a, b)
return xs
A quick statistical test:
from collections import Counter
def test(n):
derangements = (tuple(derange(range(n))) for _ in xrange(10000))
for k,v in Counter(derangements).iteritems():
print('{} {}').format(k, v)
test(4)
:
(1, 3, 0, 2) 1665
(2, 0, 3, 1) 1702
(3, 2, 0, 1) 1636
(1, 2, 3, 0) 1632
(3, 0, 1, 2) 1694
(2, 3, 1, 0) 1671
This does appear uniform over its range, and it has the nice property that each element has an equal chance to appear in each allowed slot.
But unfortunately it doesn't include all of the derangements. There are 9 derangements of size 4. (The formula and an example for n=4 are given on the Wikipedia article).