Zero-symmetric graph

In the mathematical field of graph theory, a zero-symmetric graph is a connected graph in which each vertex has exactly three incident edges and, for each two vertices, there is a unique symmetry taking one vertex to the other. Such a graph is a vertex-transitive graph but cannot be an edge-transitive graph: the number of symmetries equals the number of vertices, too few to take every edge to every other edge.

The smallest zero-symmetric graph, with 18 vertices and 27 edges
The truncated cuboctahedron, a zero-symmetric polyhedron
Graph families defined by their automorphisms
distance-transitive distance-regular strongly regular
symmetric (arc-transitive) t-transitive, t  2 skew-symmetric
(if connected)
vertex- and edge-transitive
edge-transitive and regular edge-transitive
vertex-transitive regular (if bipartite)
biregular
Cayley graph zero-symmetric asymmetric

The name for this class of graphs was coined by R. M. Foster in a 1966 letter to H. S. M. Coxeter. In the context of group theory, zero-symmetric graphs are also called graphical regular representations of their symmetry groups.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.