X-linked hypophosphatemia

X-linked hypophosphatemia (XLH) is an X-linked dominant form of rickets (or osteomalacia) that differs from most cases of dietary deficiency rickets in that vitamin D supplementation does not cure it. It can cause bone deformity including short stature and genu varum (bow-leggedness). It is associated with a mutation in the PHEX gene sequence (Xp.22) and subsequent inactivity of the PHEX protein. PHEX mutations lead to an elevated circulating (systemic) level of the hormone FGF23 which results in renal phosphate wasting, and locally in the extracellular matrix of bones and teeth an elevated level of the mineralization/calcification-inhibiting protein osteopontin. An inactivating mutation in the PHEX gene results in an increase in systemic circulating FGF23, and a decrease in the enzymatic activity of the PHEX enzyme which normally removes (degrades) mineralization-inhibiting osteopontin protein; in XLH, the decreased PHEX enzyme activity leads to an accumulation of inhibitory osteopontin locally in bones and teeth to block mineralization which, along with renal phosphate wasting, both cause osteomalacia and odontomalacia.

X-linked hypophosphatemia
Other namesX-linked dominant hypophosphatemic rickets, or X-linked Vitamin D-resistant rickets,
This condition is inherited in an X-linked dominant manner.
SpecialtyEndocrinology, pediatrics 
Complicationsosteomalacia (adults), rickets (children), fractures, enthesopathy, spinal stenosis, abnormal gait, short stature, tinnitus, hearing loss, dental complications, in rare exceptions Chiari malformation can occur.
CausesA genetic mutation of the PHEX gene results in elevated FGF23 hormone.
Medicationphosphate, vitamin-D or burosumab

For both XLH and hypophosphatasia, inhibitor-enzyme pair relationships function to regulate mineralization in the extracellular matrix through a double-negative (inhibiting the inhibitors) activation effect in a manner described as the Stenciling Principle. Both these underlying mechanisms (renal phosphate wasting systemically, and mineralization inhibitor accumulation locally) contribute to the pathophysiology of XLH that leads to soft bones and teeth (hypomineralization, osteomalacia/odontomalacia). The prevalence of the disease is 1 in 20,000.

X-linked hypophosphatemia may be lumped in with autosomal dominant hypophosphatemic rickets under general terms such as hypophosphatemic rickets. Hypophosphatemic rickets are associated with at least nine other genetic mutations. Clinical management of hypophosphatemic rickets may differ depending on the specific mutations associated with an individual case, but treatments are aimed at raising phosphate levels to promote normal bone formation.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.