Sedenion

In abstract algebra, the sedenions form a 16-dimensional noncommutative and nonassociative algebra over the real numbers, usually represented by the capital letter S, boldface S or blackboard bold . They are obtained by applying the Cayley–Dickson construction to the octonions, and as such the octonions are isomorphic to a subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, sometimes called the 32-ions or trigintaduonions. It is possible to continue applying the Cayley–Dickson construction arbitrarily many times.

Sedenions
Symbol
Typenonassociative algebra
Unitse0, ..., e15
Multiplicative identitye0
Main propertiespower associativity
distributivity
Common systems
Less common systems

Octonions () Sedenions ()

The term sedenion is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of 4 × 4 matrices over the real numbers, or that studied by Smith (1995).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.