RISC-V

RISC-V (pronounced "risk-five":1) is an open standard instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles. Unlike most other ISA designs, RISC-V is provided under royalty-free open-source licenses. Many companies are offering or have announced RISC-V hardware; open source operating systems with RISC-V support are available, and the instruction set is supported in several popular software toolchains.

RISC-V
DesignerUniversity of California, Berkeley
Bits32, 64, 128
IntroducedAugust 6, 2014 (2014-08-06)
Version
  • unprivileged ISA 20191213,
  • privileged ISA 20211203
DesignRISC
TypeLoad–store
EncodingVariable
BranchingCompare-and-branch
EndiannessLittle:9
Page size4 KiB
Extensions
  • M: Multiplication
  • A: Atomics – LR/SC & fetch-and-op
  • F: Floating point (32-bit)
  • D: FP Double (64-bit)
  • Q: FP Quad (128-bit)
  • Zicsr: Control and status register support
  • Zifencei: Load/store fence
  • C: Compressed instructions (16-bit)
  • J: Interpreted or JIT-compiled languages support
OpenYes, royalty free
Registers
General-purpose
  • 16
  • 32
(Includes one always-zero register)
Floating point
  • 32
(Optional. Width depends on available extensions)

As a RISC architecture, the RISC-V ISA is a load–store architecture. Its floating-point instructions use IEEE 754 floating-point. Notable features of the RISC-V ISA include: instruction bit field locations chosen to simplify the use of multiplexers in a CPU,:17 a design that is architecturally neutral, and a fixed location for the sign bit of immediate values to speed up sign extension.:17

The instruction set is designed for a wide range of uses. The base instruction set has a fixed length of 32-bit naturally aligned instructions, and the ISA supports variable length extensions where each instruction can be any number of 16-bit parcels in length.:7–10 Extensions support small embedded systems, personal computers, supercomputers with vector processors, and warehouse-scale parallel computers.

The instruction set specification defines 32-bit and 64-bit address space variants. The specification includes a description of a 128-bit flat address space variant, as an extrapolation of 32- and 64-bit variants, but the 128-bit ISA remains "not frozen" intentionally, because as of 2023, there is so little practical experience with such large memory systems.:41

Unlike other academic designs which are typically optimized only for simplicity of exposition, the designers intended that the RISC-V instruction set be usable for practical computers. As of June 2019, version 2.2 of the user-space ISA and version 1.11 of the privileged ISA are frozen, permitting software and hardware development to proceed. The user-space ISA, now renamed the Unprivileged ISA, was updated, ratified and frozen as version 20191213. An external debug specification is available as a draft, version 0.13.2.

The project began in 2010 at the University of California, Berkeley. There are now members in over 70 countries contributing and collaborating to define RISC-V open specifications. RISC-V International, the non-profit managing RISC-V, is currently headquartered in Switzerland.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.