Reversible addition−fragmentation chain-transfer polymerization
Reversible addition−fragmentation chain-transfer or RAFT polymerization is one of several kinds of reversible-deactivation radical polymerization. It makes use of a chain-transfer agent (CTA) in the form of a thiocarbonylthio compound (or similar, from here on referred to as a RAFT agent, see Figure 1) to afford control over the generated molecular weight and polydispersity during a free-radical polymerization. Discovered at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia in 1998, RAFT polymerization is one of several living or controlled radical polymerization techniques, others being atom transfer radical polymerization (ATRP) and nitroxide-mediated polymerization (NMP), etc. RAFT polymerization uses thiocarbonylthio compounds, such as dithioesters, thiocarbamates, and xanthates, to mediate the polymerization via a reversible chain-transfer process. As with other controlled radical polymerization techniques, RAFT polymerizations can be performed under conditions that favor low dispersity (narrow molecular weight distribution) and a pre-chosen molecular weight. RAFT polymerization can be used to design polymers of complex architectures, such as linear block copolymers, comb-like, star, brush polymers, dendrimers and cross-linked networks.
Reversible-addition-fragmentation chain-transfer polymerization (RAFT polymerization, RAFT): Degenerate-transfer radical polymerization in which chain activation and chain deactivation involve a degenerative chain-transfer process which occurs by a two-step addition-fragmentation mechanism. Note 1: Examples of RAFT agents include certain dithioesters, trithiocarbonates, xanthates (dithiocarbonates), and dithiocarbamates.
Note 2: RAFT with xanthates is also known as MADIX (macromolecular design by interchange of xanthate).
Polymer science |
---|