Mechanics of planar particle motion
Mechanics of planar particle motion is the analysis of the motion of particles gravitationally attracted to one another observed from non-inertial reference frames and the generalization of this problem to planetary motion. This type of analysis is closely related to centrifugal force, two-body problem, orbit and Kepler's laws of planetary motion. The mechanics of planar particle motion fall in the general field of analytical dynamics, and helps determine orbits from the given force laws. This article is focused more on the kinematic issues surrounding planar motion, which are the determination of the forces necessary to result in a certain trajectory given the particle trajectory.
Part of a series on |
Classical mechanics |
---|
|
General results presented in fictitious forces are applied to observations of a moving particle as seen from several specific non-inertial frames. For example, a local frame (one tied to the moving particle so it appears stationary), and a co-rotating frame (one with an arbitrarily located but fixed axis and a rate of rotation that makes the particle appear to have only radial motion and zero azimuthal motion). With this, the Lagrangian approach to fictitious forces is introduced.
Unlike real forces such as electromagnetic forces, fictitious forces do not originate from physical interactions between objects.