Material implication (rule of inference)

In propositional logic, material implication is a valid rule of replacement that allows for a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- or and that either form can replace the other in logical proofs. In other words, if is true, then must also be true, while if is not true, then cannot be true either; additionally, when is not true, may be either true or false.

Material implication
TypeRule of replacement
FieldPropositional calculus
StatementP implies Q is logically equivalent to not- or . Either form can replace the other in logical proofs.
Symbolic statement

     

Where "" is a metalogical symbol representing "can be replaced in a proof with," P and Q are any given logical statements, and can be read as "(not P) or Q". To illustrate this, consider the following statements:

  • : Sam ate an orange for lunch
  • : Sam ate a fruit for lunch

Then, to say, "Sam ate an orange for lunch" implies "Sam ate a fruit for lunch" (). Logically, if Sam did not eat a fruit for lunch, then Sam also cannot have eaten an orange for lunch (by contraposition). However, merely saying that Sam did not eat an orange for lunch provides no information on whether or not Sam ate a fruit (of any kind) for lunch.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.