Location arithmetic

Location arithmetic (Latin arithmeticae localis) is the additive (non-positional) binary numeral systems, which John Napier explored as a computation technique in his treatise Rabdology (1617), both symbolically and on a chessboard-like grid.

Napier's terminology, derived from using the positions of counters on the board to represent numbers, is potentially misleading because the numbering system is, in facts, non-positional in current vocabulary.

During Napier's time, most of the computations were made on boards with tally-marks or jetons. So, unlike how it may be seen by the modern reader, his goal was not to use moves of counters on a board to multiply, divide and find square roots, but rather to find a way to compute symbolically with pen and paper.

However, when reproduced on the board, this new technique did not require mental trial-and-error computations nor complex carry memorization (unlike base 10 computations). He was so pleased by his discovery that he said in his preface:

it might be well described as more of a lark than a labor, for it carries out addition, subtraction, multiplication, division and the extraction of square roots purely by moving counters from place to place.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.