Lindemann–Weierstrass theorem
In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following:
Lindemann–Weierstrass theorem — if α1, ..., αn are algebraic numbers that are linearly independent over the rational numbers , then eα1, ..., eαn are algebraically independent over .
Part of a series of articles on the |
mathematical constant π |
---|
3.1415926535897932384626433... |
Uses |
Properties |
Value |
People |
History |
In culture |
Related topics |
Part of a series of articles on the |
mathematical constant e |
---|
Properties |
Applications |
Defining e |
People |
Related topics |
In other words, the extension field has transcendence degree n over .
An equivalent formulation (Baker 1990, Chapter 1, Theorem 1.4), is the following:
An equivalent formulation — If α1, ..., αn are distinct algebraic numbers, then the exponentials eα1, ..., eαn are linearly independent over the algebraic numbers.
This equivalence transforms a linear relation over the algebraic numbers into an algebraic relation over by using the fact that a symmetric polynomial whose arguments are all conjugates of one another gives a rational number.
The theorem is named for Ferdinand von Lindemann and Karl Weierstrass. Lindemann proved in 1882 that eα is transcendental for every non-zero algebraic number α, thereby establishing that π is transcendental (see below). Weierstrass proved the above more general statement in 1885.
The theorem, along with the Gelfond–Schneider theorem, is extended by Baker's theorem, and all of these would be further generalized by Schanuel's conjecture.