J-2 ring
In commutative algebra, a J-0 ring is a ring such that the set of regular points, that is, points of the spectrum at which the localization is a regular local ring, contains a non-empty open subset, a J-1 ring is a ring such that the set of regular points is an open subset, and a J-2 ring is a ring such that any finitely generated algebra over the ring is a J-1 ring.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.