Finitely generated algebra

In mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra A over a field K where there exists a finite set of elements a1,...,an of A such that every element of A can be expressed as a polynomial in a1,...,an, with coefficients in K.

Equivalently, there exist elements such that the evaluation homomorphism at

is surjective; thus, by applying the first isomorphism theorem, .

Conversely, for any ideal is a -algebra of finite type, indeed any element of is a polynomial in the cosets with coefficients in . Therefore, we obtain the following characterisation of finitely generated -algebras

is a finitely generated -algebra if and only if it is isomorphic to a quotient ring of the type by an ideal .

If it is necessary to emphasize the field K then the algebra is said to be finitely generated over K. Algebras that are not finitely generated are called infinitely generated.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.