Indium nitride

Indium nitride (InN) is a small bandgap semiconductor material which has potential application in solar cells and high speed electronics.

Indium nitride
Names
Other names
Indium(III) nitride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.042.831
UNII
  • InChI=1S/In.N Y
    Key: NWAIGJYBQQYSPW-UHFFFAOYSA-N Y
  • InChI=1/In.N/rInN/c1-2
    Key: NWAIGJYBQQYSPW-QCNKTVRGAR
  • [In+3].[N-3]
  • [In]#N
Properties
InN
Molar mass 128.83 g/mol
Appearance black powder
Density 6.81 g/cm3
Melting point 1,100 °C (2,010 °F; 1,370 K)
hydrolysis
Band gap 0.65 eV (300 K)
Electron mobility 3200 cm2/(V.s) (300 K)
Thermal conductivity 45 W/(m.K) (300 K)
2.9
Structure
Wurtzite (hexagonal)
C46v-P63mc
a = 354.5 pm, c = 570.3 pm
Tetrahedral
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant, hydrolysis to ammonia
Safety data sheet (SDS) External SDS
Related compounds
Other anions
Indium phosphide
Indium arsenide
Indium antimonide
Other cations
Boron nitride
Aluminium nitride
Gallium nitride
Related compounds
Indium gallium nitride
Indium gallium aluminium nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

The bandgap of InN has now been established as ~0.7 eV depending on temperature (the obsolete value is 1.97 eV). The effective electron mass has been recently determined by high magnetic field measurements, m* =0.055 m0.

Alloyed with GaN, the ternary system InGaN has a direct bandgap span from the infrared (0.69 eV) to the ultraviolet (3.4 eV).

Currently there is research into developing solar cells using the nitride based semiconductors. Using one or more alloys of indium gallium nitride (InGaN), an optical match to the solar spectrum can be achieved. The bandgap of InN allows a wavelengths as long as 1900 nm to be utilized. However, there are many difficulties to be overcome if such solar cells are to become a commercial reality: p-type doping of InN and indium-rich InGaN is one of the biggest challenges. Heteroepitaxial growth of InN with other nitrides (GaN, AlN) has proved to be difficult.

Thin layers of InN can be grown using metalorganic chemical vapour deposition (MOCVD).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.