Gallium nitride

Gallium nitride
Names
IUPAC name
Gallium nitride
Other names
gallium(III) nitride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.042.830
UNII
  • InChI=1S/Ga.N Y
    Key: JMASRVWKEDWRBT-UHFFFAOYSA-N Y
  • InChI=1/Ga.N/rGaN/c1-2
    Key: JMASRVWKEDWRBT-MDMVGGKAAI
  • [Ga]#N
  • [Ga+3].[N-3]
Properties
GaN
Molar mass 83.730 g/mol
Appearance yellow powder
Density 6.1 g/cm3
Melting point > 1600 °C
Insoluble
Band gap 3.4 eV (300 K, direct)
Electron mobility 1500 cm2/(V·s) (300 K)
Thermal conductivity 1.3 W/(cm·K) (300 K)
2.429
Structure
Wurtzite
C6v4-P63mc
a = 3.186 Å, c = 5.186 Å
Tetrahedral
Thermochemistry
−110.2 kJ/mol
Hazards
Flash point Non-flammable
Related compounds
Other anions
Gallium phosphide
Gallium arsenide
Gallium antimonide
Other cations
Boron nitride
Aluminium nitride
Indium nitride
Related compounds
Aluminium gallium arsenide
Indium gallium arsenide
Gallium arsenide phosphide
Aluminium gallium nitride
Indium gallium nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Gallium nitride (GaN) is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it special properties for applications in optoelectronic, high-power and high-frequency devices. For example, GaN is the substrate which makes violet (405 nm) laser diodes possible, without requiring nonlinear optical frequency-doubling.

Its sensitivity to ionizing radiation is low (like other group III nitrides), making it a suitable material for solar cell arrays for satellites. Military and space applications could also benefit as devices have shown stability in high radiation environments.

Because GaN transistors can operate at much higher temperatures and work at much higher voltages than gallium arsenide (GaAs) transistors, they make ideal power amplifiers at microwave frequencies. In addition, GaN offers promising characteristics for THz devices. Due to high power density and voltage breakdown limits GaN is also emerging as a promising candidate for 5G cellular base station applications. Since the early 2020s, GaN power transistors have come into increasing use in power supplies in electronic equipment, converting AC mains electricity to low-voltage DC.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.