Geodesic manifold
In mathematics, a complete manifold (or geodesically complete manifold) M is a (pseudo-) Riemannian manifold for which, starting at any point p, you can follow a "straight" line indefinitely along any direction. More formally, the exponential map at point p, is defined on TpM, the entire tangent space at p.
Equivalently, consider a maximal geodesic . Here is an open interval of , and, because geodesics are parameterized with "constant speed", it is uniquely defined up to transversality. Because is maximal, maps the ends of to points of ∂M, and the length of measures the distance between those points. A manifold is geodesically complete if for any such geodesic , we have that .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.