Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space (M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.
The family gp of inner products is called a Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds.
A common convention is to take g to be smooth, which means that for any smooth coordinate chart (U, x) on M, the n2 functions
are smooth functions, i.e., they are infinitely differentiable. These functions are commonly designated as .
With further restrictions on the , one could also consider Lipschitz Riemannian metrics or measurable Riemannian metrics, among many other possibilities.
A Riemannian metric (tensor) makes it possible to define several geometric notions on a Riemannian manifold, such as angle at an intersection, length of a curve, area of a surface and higher-dimensional analogues (volume, etc.), extrinsic curvature of submanifolds, and intrinsic curvature of the manifold itself.