GABAA receptor positive allosteric modulator

In pharmacology, GABAA receptor positive allosteric modulators, also known as GABAkines or GABAA receptor potentiators, are positive allosteric modulator (PAM) molecules that increase the activity of the GABAA receptor protein in the vertebrate central nervous system.

Fig 1. Chemical structure of gamma-aminobutyric acid or GABA
Fig 2. Schematic diagram of a GABAA receptor protein ((α1)2(β2)2(γ2)) which illustrates the five combined subunits that form the protein, the chloride (Cl-) ion channel pore, the two GABA active binding sites at the α1 and β2 interfaces, and the benzodiazepine (BZD) allosteric binding site at the α1 and γ2 interface.

GABA is a major inhibitory neurotransmitter in the central nervous system. Upon binding, it triggers the GABAA receptor to open its chloride channel to allow chloride ions into the neuron, making the cell hyperpolarized and less likely to fire. GABAA PAMs increase the effect of GABA by making the channel open more frequently or for longer periods. However, they have no effect if GABA or another agonist is not present.

Unlike GABAA receptor agonists, GABAA PAMs do not bind at the same active site as the γ-aminobutyric acid (GABA) neurotransmitter molecule: they affect the receptor by binding at a different site on the protein. This is called allosteric modulation.

In psychopharmacology, GABAA receptor PAMs used as drugs have mainly sedative and anxiolytic effects. Examples of GABAA PAMs include alcohol (ethanol), benzodiazepines such as diazepam (Valium) and alprazolam (Xanax), Z-drugs such as zolpidem (Ambien) and the barbiturate drugs.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.