DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996. It is a density-based clustering non-parametric algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common, and most commonly cited, clustering algorithms.

In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, ACM SIGKDD. As of July 2020, the follow-up paper "DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN" appears in the list of the 8 most downloaded articles of the prestigious ACM Transactions on Database Systems (TODS) journal.

The popular follow-up HDBSCAN* was initially published by Ricardo J. G. Campello, David Moulavi, and Jörg Sander in 2013, then expanded upon with Arthur Zimek in 2015. It revises some of the original decisions such as the border points and produces a hierarchical instead of a flat result.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.