Bitruncated cubic honeycomb

The bitruncated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of truncated octahedra (or, equivalently, bitruncated cubes). It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

Bitruncated cubic honeycomb
 
TypeUniform honeycomb
Schläfli symbol2t{4,3,4}
t1,2{4,3,4}
Coxeter-Dynkin diagram
Cell type(4.6.6)
Face typessquare {4}
hexagon {6}
Edge figureisosceles triangle {3}
Vertex figure
(tetragonal disphenoid)
Space group
Fibrifold notation
Coxeter notation
Im3m (229)
8o:2
[[4,3,4]]
Coxeter group, [4,3,4]
DualOblate tetrahedrille
Disphenoid tetrahedral honeycomb
Cell:
Propertiesisogonal, isotoxal, isochoric

John Horton Conway calls this honeycomb a truncated octahedrille in his Architectonic and catoptric tessellation list, with its dual called an oblate tetrahedrille, also called a disphenoid tetrahedral honeycomb. Although a regular tetrahedron can not tessellate space alone, this dual has identical disphenoid tetrahedron cells with isosceles triangle faces.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.