This is both a correction of Kaz's errors, and a vote of confidence for the OP.
In his original response, Kaz states the order of Unix lex
precedence exactly backward. From the lex
documentation:
Lex can handle ambiguous specifications. When more than one expression can
match the current input, Lex chooses as follows:
The longest match is preferred.
Among rules which matched the same number of characters, the rule given
first is preferred.
In addition, Kaz is wrong to criticize the OP's solution of using Perl-regex word-boundary matching. As it happens, you are allowed (free of tormenting guilt) to match words in any way that your lexer generator will support. CL-LEX uses Perl regexes, which use \b
as a convenient syntax for the more cumbersome lex
approximate of :
%{
#include <stdio.h>
%}
WC [A-Za-z']
NW [^A-Za-z']
%start INW NIW
{WC} { BEGIN INW; REJECT; }
{NW} { BEGIN NIW; REJECT; }
<INW>a { printf("'a' in wordn"); }
<NIW>a { printf("'a' not in wordn"); }
All things being equal, finding a way to unambiguously match his words is probably better than the alternative.
Despite Kaz wanting to slap him, the OP has answered his own question correctly, coming up with a solution that takes advantage of the flexibility of his chosen lexer generator.