IEEE-754, which is a standard common implementations of floating point numbers abide to, requires floating-point operations to produce a result that is the nearest representable value to an infinitely-precise result. Thus the only imprecision that you will face is rounding after each operation you perform, as well as propagation of rounding errors from the operations performed earlier in the chain. Floats are not per se inexact. And by the way, epsilon can and should be computed, you can consult any numerics book on that.
Floating point numbers can represent integers precisely up to the length of their mantissa. So for example if you cast from an int to a double, it will always be exact, but for casting into into a float, it will no longer be exact for very large integers.
There is one major example of extensive usage of floating point numbers as a substitute for integers, it's the LUA scripting language, which has no integer built-in type, and floating-point numbers are used extensively for logic and flow control etc. The performance and storage penalty from using floating-point numbers turns out to be smaller than the penalty of resolving multiple types at run time and makes the implementation lighter. LUA has been extensively used not only on PC, but also on game consoles.
Now, many compilers have an optional switch that disables IEEE-754 compatibility. Then compromises are made. Denormalized numbers (very very small numbers where the exponent has reached smallest possible value) are often treated as zero, and approximations in implementation of power, logarithm, sqrt, and 1/(x^2) can be made, but addition/subtraction, comparison and multiplication should retain their properties for numbers which can be exactly represented.