Here is an implementation in Python based on izomorphius' very helpful hint above. This builds on this implementation of the increasing subsequence problem. It works by, as izomorphius says, keeping track of "the best V's found so far" as well as "the best increasing sequences found so far". Note that extending a V, once it has been identified, is no different from extending a decreasing sequence. Also there has to be a rule to "spawn" new candidate V's from previously found increasing subsequences.
from bisect import bisect_left
def Vsequence(seq):
"""Returns the longest (non-contiguous) subsequence of seq that
first increases, then decreases (i.e. a "V sequence").
"""
# head[j] = index in 'seq' of the final member of the best increasing
# subsequence of length 'j + 1' yet found
head = [0]
# head_v[j] = index in 'seq' of the final member of the best
# V-subsequence yet found
head_v = []
# predecessor[j] = linked list of indices of best increasing subsequence
# ending at seq[j], in reverse order
predecessor = [-1] * len(seq)
# similarly, for the best V-subsequence
predecessor_v = [-1] * len(seq)
for i in xrange(1, len(seq)):
## First: extend existing V's via decreasing sequence algorithm.
## Note heads of candidate V's are stored in head_v and that
## seq[head_v[]] is a non-increasing sequence
j = -1 ## "length of best new V formed by modification, -1"
if len(head_v) > 0:
j = bisect_left([-seq[head_v[idx]] for idx in xrange(len(head_v))], -seq[i])
if j == len(head_v):
head_v.append(i)
if seq[i] > seq[head_v[j]]:
head_v[j] = i
## Second: detect "new V's" if the next point is lower than the head of the
## current best increasing sequence.
k = -1 ## "length of best new V formed by spawning, -1"
if len(head) > 1 and seq[i] < seq[head[-1]]:
k = len(head)
extend_with(head_v, i, k + 1)
for idx in range(k,-1,-1):
if seq[head_v[idx]] > seq[i]: break
head_v[idx] = i
## trace new predecessor path, if found
if k > j:
## It's better to build from an increasing sequence
predecessor_v[i] = head[-1]
trace_idx = predecessor_v[i]
while trace_idx > -1:
predecessor_v[trace_idx] = predecessor[trace_idx]
trace_idx=predecessor_v[trace_idx]
elif j > 0:
## It's better to extend an existing V
predecessor_v[i] = head_v[j - 1]
## Find j such that: seq[head[j - 1]] < seq[i] <= seq[head[j]]
## seq[head[j]] is increasing, so use binary search.
j = bisect_left([seq[head[idx]] for idx in xrange(len(head))], seq[i])
if j == len(head):
head.append(i) ## no way to turn any increasing seq into a V!
if seq[i] < seq[head[j]]:
head[j] = i
if j > 0: predecessor[i] = head[j - 1]
## trace subsequence back to output
result = []
trace_idx = head_v[-1]
while (trace_idx >= 0):
result.append(seq[trace_idx])
trace_idx = predecessor_v[trace_idx]
return result[::-1]
Some example output:
>>> l1
[26, 92, 36, 61, 91, 93, 98, 58, 75, 48, 8, 10, 58, 7, 95]
>>> Vsequence(l1)
[26, 36, 61, 91, 93, 98, 75, 48, 10, 7]
>>>
>>> l2
[20, 66, 53, 4, 52, 30, 21, 67, 16, 48, 99, 90, 30, 85, 34, 60, 15, 30, 61, 4]
>>> Vsequence(l2)
[4, 16, 48, 99, 90, 85, 60, 30, 4]