ElKamina's answer is correct but one thing to note about this is that it is identical to doing k independent ordinary least squares regressions. That is, the same as doing a separate linear regression from X to pitch, from X to yaw, and from X to strength. This means, you are not taking advantage of correlations between the output variables. This may be fine for your application, but one alternative that does take advantage of correlations in the output is reduced rank regression(a matlab implementation here), or somewhat related, you can explicitly uncorrelate y by projecting it onto its principle components (see PCA, also called PCA whitening in this case since you aren't reducing the dimensionality).
I highly recommend chapter 6 of Izenman's textbook "Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning" for a fairly high level overview of these techniques. If you're at a University it may be available online through your library.
If those alternatives don't perform well, there are many sophisticated non-linear regression methods that have multiple output versions (although most software packages don't have the multivariate modifications) such as support vector regression, Gaussian process regression, decision tree regression, or even neural networks.