'Stopping' is not often discussed because it's often never done. In those cases where it is required, it's often just as easier and more flexible to enqueue a poison-pill using the higher-level P-C protocol itself as it is to build extra functionality into the queue itself.
If you really want to do this, you could indeed set a flag that causes every consumer to raise an exception, either 'immediately' or whenever it gets back to the queue, but there are problems. Do you need the 'done' method to be synchronous, ie. do you want all the consumers gone by the time 'done' returns, or asynchronous, ie. the last consumer thread calls an event parameter when all the other the consumers are gone?
How are you going to arrange for those consumers that are currently waiting to wake up? How many are waiting and how many are busy, but will return to the queue when they have done their work? What if one or more consumers are stuck on a blocking call, (perhaps they can be unblocked, but that requires a call from another thread - how are you going to do that)?
How are the consumers going to notify that they have handled their exception and are about to die? Is 'about to die' enough, or do you need to wait on the thread handle? If you have to wait on the thread handle, what is going to do the waiting - the thread requesting the queue shutdown or the last consumer thread to notify?
Oh yes - to be safe, you should arrange for producer threads that turn up with objects to queue up while in 'shutting down' state to raise an exception as well.
I raise these questions becasue I've done all this once, a long time ago. Eventually, it all worked-ish. The objects queued up all had to have a 'QueuedItem' inserted into their inheritance chain, (so that a job-cancellation method could be exposed to the queue), and the queue had to keep a thread-safe list of objects that had been popped-off by
threads but not processed yet.
After a while, I stopped using the class in favour of a simple P-C queue with no special shutdown mechanism.