How hard is it for a given ciphertext generated by a given (symmetric or asymmetric) encryption algorithm working on a plaintext/key pair, to find a different plaintext/key pair that yields the same cyphertext?
And how hard is it two find two plaintext/key pairs lead to the same cyphertext?
What led to this question, is another question that might turn out to have nothing to do with the above questions:
If you have a ciphertext and a key and want to decrypt it using some decryption routine, the routine usually tells you, if the key was correct. But how does it know it? Does it look for some pattern in the resulted plaintext, that indicates, that the decryption was successful? Does there exists another key results in some different plaintext, that contains the pattern and is also reported "valid" by the routine?
Follow-up question inspired by answers and comments:
If the allowed plaintext/key pairs where restricted in the on of the following (or both) way(s):
1) The plaintext starts with the KCV (Key check value) of the key.
2) The plaintext starts with a hash value of some plaintext/key combination
Would this make the collision finding infeasible? Is it even clear, that such a plaintext/key exists=