I'm wiring a program that tests a set of wires for open or short circuits. The program, which runs on an AVR, drives a test vector (a walking '1') onto the wires and receives the result back. It compares this resultant vector with the expected data which is already stored on an SD Card or external EEPROM.
Here's an example, assume we have a set of 8 wires all of which are straight through i.e. they have no junctions. So if we drive 0b00000010 we should receive 0b00000010.
Suppose we receive 0b11000010. This implies there is a short circuit between wire 7,8 and wire 2. I can detect which bits I'm interested in by 0b00000010 ^ 0b11000010 = 0b11000000. This tells me clearly wire 7 and 8 are at fault but how do I find the position of these '1's efficiently in an large bit-array. It's easy to do this for just 8 wires using bit masks but the system I'm developing must handle up to 300 wires (bits). Before I started using macros like the following and testing each bit in an array of 300*300-bits I wanted to ask here if there was a more elegant solution.
#define BITMASK(b) (1 << ((b) % 8))
#define BITSLOT(b) ((b / 8))
#define BITSET(a, b) ((a)[BITSLOT(b)] |= BITMASK(b))
#define BITCLEAR(a,b) ((a)[BITSLOT(b)] &= ~BITMASK(b))
#define BITTEST(a,b) ((a)[BITSLOT(b)] & BITMASK(b))
#define BITNSLOTS(nb) ((nb + 8 - 1) / 8)
Just to further show how to detect an open circuit. Expected data: 0b00000010, received data: 0b00000000 (the wire isn't pulled high). 0b00000010 ^ 0b00000000 = 0b0b00000010 - wire 2 is open.
NOTE: I know testing 300 wires is not something the tiny RAM inside an AVR Mega 1281 can handle, that is why I'll split this into groups i.e. test 50 wires, compare, display result and then move forward.