This time my question is more methodological than technical. I have weekly time series data which gets updated every week. Unfortunately the time series is quite volatile. I would thus like to apply a filter/a smoothing method. I tried Hodrick-Prescott and LOESS. Both results look fine, with the downturn that if a new datapoint follows which diverges strongly from the historic data points, the older values have to be revised/are changing. Does somebody know a method which is implemented in R, which could do what I want? A name of a method/a function would probably be completely sufficient. It should however be something more sophisticated than a left sided moving average, because I would not like to lose data at the beginning of the time series. Every helping comment is appreciated! Thank you very much!
Best regards,
Andreas