As a rough and untutored background, in HoTT, one deduces the heck out of the inductively defined type
Inductive paths {X : Type } : X -> X -> Type :=
| idpath : forall x: X, paths x x.
which allows the very general construction
Lemma transport {X : Type } (P : X -> Type ){ x y : X} (γ : paths x y):
P x -> P y.
Proof.
induction γ.
exact (fun a => a).
Defined.
The Lemma transport
would be at the heart of HoTT "replace" or "rewrite" tactics; the trick, so far as I understand it, would be, supposing a goal which you or I can abstractly recognize as
...
H : paths x y
[ Q : (G x) ]
_____________
(G y)
to figure out what is the necessary dependent type G, so that we can apply (transport G H)
. So far, all I've figured out is that
Ltac transport_along γ :=
match (type of γ) with
| ?a ~~> ?b =>
match goal with
|- ?F b => apply (transport F γ)
| _ => idtac "apparently couldn't abstract" b "from the goal." end
| _ => idtac "Are you sure" γ "is a path?" end.
isn't general enough. That is, the first idtac
gets used rather often.
The question is
[Is there a | what is the] Right Thing to Do?