Aside form all the codegenerator quality reasons, there are also other problems:
- The free C compilers (gcc, clang) are a bit Unix centric
- Support more than one compiler (e.g. gcc on Unix and MSVC on Windows) requires duplication of effort.
- compilers might drag in runtime libraries (or even *nix emulations) on Windows that are painful. Two different C runtimes (e.g. linux libc and msvcrt) to base on complicate your own runtime and its maintenance
- You get a big externally versioned blob in your project, which means a major version transition (e.g. a change of mangling could hurts your runtime lib, ABI changes like change of alignment) might require quite some work. Note that this goes for compiler AND externally versioned (parts of the) runtime library. And multiple compilers multiply this. This is not so bad for C as backend though as in the case where you directly connect to (read: bet on) a backend, like being a gcc/llvm frontend.
- In many languages that follow this path, you see Cisms trickle through into the main language. Of course this won't happy to you, but you will be tempted :-)
- Language functionality that doesn't directly map to standard C (like nested procedures,
and other things that need stack fiddling) are difficult.
- If something is wrong, users will be confronted with C level compiler or linker errors that are outside their field of experience. Parsing them and making them your own is painful, specially with multiple compilers and -versions
Note that point 4 also means that you will have to invest time to just keep things working when the external projects evolve. That is time that generally doesn't really go into your project, and since the project is more dynamic, multiplatform releases will need a lot of extra release engineering to cater for change.
So in short, from what I've seen, while such a move allows a swift start (getting a reasonable codegenerator for free for many architectures), there are downsides. Most of them are related to loss of control and poor Windows support of *nix centric projects like gcc. (LLVM is too new to say much on long term, but their rhetoric sounds a lot like gcc did ten years ago). If a project you are hugely dependent on keeps a certain course (like GCC going to win64 awfully slow), then you are stuck with it.
First, decide if you want to have serious non *nix ( OS X being more unixy) support, or only a Linux compiler with a mingw stopgap for Windows? A lot of compilers need first rate Windows support.
Second, how finished must the product become? What's the primary audience ? Is it a tool for the open source developer that can handle a DIY toolchain, or do you want to target a beginner market (like many 3rd party products, e.g. RealBasic)?
Or do you really want to provide a well rounded product for professionals with deep integration and complete toolchains?
All three are valid directions for a compiler project. Ask yourself what your primary direction is, and don't assume that more options will be available in time. E.g. evaluate where projects are now that chose to be a GCC frontend in the early nineties.
Essentially the unix way is to go wide (maximize platforms)
The complete suites (like VS and Delphi, the latter which recently also started to support OS X and has supported linux in the past) go deep and try maximize productivity. (support specially the windows platform nearly completely with deep levels of integration)
The 3rd party projects are less clear cut. They go more after self-employed programmers, and niche shops. They have less developer resources, but manage and focus them better.