Neo4J is a specific technology, while big data is more a generic term. I think what you're asking about OLAP and OLTP. As data gets bigger, there are differences between use cases for RDF style graph databases, which are often used for OLAP (On-line Analytical Processing) style analytics. In short, OLAP is designed for analytics that look across an big data set, while OLTP is more aimed at INSERT/DELETEs (on potentially big data).
OLAP-based traversals tend to process the entire graph, while OLTP based traversals tend to process smaller data sets by starting with one or a handful of vertices and traversing from there.
For example, let’s say you wanted to calculate the average age of friends of one particular user. Great use case for OLTP, since the query data set is small. However, if you wanted to calculate the average age of everyone on the database, OLAP is the preferred technology.
OLAP is optimal for deep analysis of a lot of data, while OLTP is better suited for fast running queries and a lot of INSERTs. If you’re trying to achieve a SLA where the analytics must complete within a certain timeframe, consider the type of analytics and which one is better suited. Or maybe you need both.