After spending a lot of time trying to wrap my head around multiprocessing I came up with this code which is a benchmark test:
Example 1:
from multiprocessing import Process
class Alter(Process):
def __init__(self, word):
Process.__init__(self)
self.word = word
self.word2 = ''
def run(self):
# Alter string + test processing speed
for i in range(80000):
self.word2 = self.word2 + self.word
if __name__=='__main__':
# Send a string to be altered
thread1 = Alter('foo')
thread2 = Alter('bar')
thread1.start()
thread2.start()
# wait for both to finish
thread1.join()
thread2.join()
print(thread1.word2)
print(thread2.word2)
This completes in 2 seconds (half the time of multithreading). Out of curiosity I decided to run this next:
Example 2:
word2 = 'foo'
word3 = 'bar'
word = 'foo'
for i in range(80000):
word2 = word2 + word
word = 'bar'
for i in range(80000):
word3 = word3 + word
print(word2)
print(word3)
To my horror this ran in less than half a second!
What is going on here? I expected multiprocessing to run faster - shouldn't it complete in half Example 2's time given that Example 1 is Example 2 split into two processes?
Update:
After considering Chris' feedback, I have included the 'actual' code consuming the most process time, and lead me to consider multiprocessing:
self.ListVar = [[13379+ strings],[13379+ strings],
[13379+ strings],[13379+ strings]]
for b in range(len(self.ListVar)):
self.list1 = []
self.temp = []
for n in range(len(self.ListVar[b])):
if not self.ListVar[b][n] in self.temp:
self.list1.insert(n, self.ListVar[b][n] + '(' +
str(self.ListVar[b].count(self.ListVar[b][n])) +
')')
self.temp.insert(0, self.ListVar[b][n])
self.ListVar[b] = list(self.list1)