Big-O notation is designed to describe how an alogorithm behaves in the limit, as n goes to infinity. This is a much easier thing to work with in a theoretical study than in a practical experiment. I would pick things to study that you can easily measure that and that people care about, such as accuracy and computer resources (time/memory) consumed.
When you write and run a computer program to compare two algorithms, you are performing a scientific experiment, just like somebody who measures the speed of light, or somebody who compares the death rates of smokers and non-smokers, and many of the same factors apply.
Try and choose an example problem or problems to solve that is representative, or at least interesting to you, because your results may not generalise to sitations you have not actually tested. You may be able to increase the range of situations to which your results reply if you sample at random from a large set of possible problems and find that all your random samples behave in much the same way, or at least follow much the same trend. You can have unexpected results even when the theoretical studies show that there should be a nice n log n trend, because theoretical studies rarely account for suddenly running out of cache, or out of memory, or usually even for things like integer overflow.
Be alert for sources of error, and try to minimise them, or have them apply to the same extent to all the things you are comparing. Of course you want to use exactly the same input data for all of the algorithms you are testing. Make multiple runs of each algorithm, and check to see how variable things are - perhaps a few runs are slower because the computer was doing something else at a time. Be aware that caching may make later runs of an algorithm faster, especially if you run them immediately after each other. Which time you want depends on what you decide you are measuring. If you have a lot of I/O to do remember that modern operating systems and computer cache huge amounts of disk I/O in memory. I once ended up powering the computer off and on again after every run, as the only way I could find to be sure that the device I/O cache was flushed.